安全管理网

脱硫吸收塔废水坑浆液溢流原因分析及控制对策

作者:颜海伟  
评论: 更新日期:2022年03月08日

表1事故发生前某电厂#1机组运行参数

QQ截图20190708090734.jpg

2.3亚硫酸钙氧化不充分

WFGD的实际运行工况表明,在其他基本参数稳定的情况下,增加石灰石浆液量,即升高浆液pH值,可在一定程度上提高脱硫效率。由于需要处理的SO2总量增多,为保证SO2排放浓度达到原设计值(≤168mg/m3),吸收塔控制pH值较高,在5.7~6.0之间。但是SO32-氧化的最佳pH为4.5~4.7,如图5所示;当pH值为5.7~6.0时,塔内的氧化效率明显降低。为保证石膏氧化效果,电厂启动了备用氧化风机,保持2台氧化风机运行,但其设计裕量无法满足系统要求,导致石膏浆液中的亚硫酸盐超标,无法形成较大颗粒的石膏晶体,因此部分小粒径石膏晶体容易被烟气携带进入冷凝水管。

QQ截图20190708090721.jpg

图5pH对SO32-氧化速率的影响

同时,石膏浆液中CaSO3含量过高易结晶析出CaSO3.1/2H2O,该晶体呈针状,其黏性较高,粒径偏小,密度大。当该针状晶体含量过高时,会造成浆液黏稠、密度偏大,不利于石膏脱水。此外,大量CaSO3浆液颗粒被烟气携带,沾在除雾器叶片表面,正常冲洗程序无法去除,长时间运行会造成除雾器堵塞。

2.4吸收塔内浆液密度过高

吸收塔内浆液的密度直观反映塔内CaSO4.2H2O,CaCO3,CaSO3.1/2H2O等固体物质的浓度大小;在不同密度下,塔内浆液的成分是不同的。通过化验可知,当密度大于1150kg/m3时,浆液中CaCO3和CaSO4.2H2O的浓度已趋于饱和,常温下CaCO3溶解度为0.0013g/100mL,溶解度小于0.01g,属于难溶物质,CaSO4.2H2O溶解度为0.241g/100mL,所以在过饱和状态下,密度值升高,说明浆液中的石膏固体含量随之增加。事故发生前一个小时,回流水箱出口母管穿孔泄漏,石膏脱水系统停运检修4h,直接造成塔内浆液密度高达1217kg/m3;含大量CaSO3和CaSO4的高密度浆液被循环泵运至塔内喷淋层,吸收SO2效率降低,与烟气接触时极易被携带,为除雾器的堵塞和石膏浆液的溢出提供了条件。此后,脱水系统恢复运转,石膏旋流器的5个旋流子全开,仍然出力不足,根本无法有效、快速降低塔内浆液密度。

3控制对策

3.1事故联系

综上所述,分析事故现象、原因之间的联系,如图6所示;通过脱硫系统的超低排放改造和运行参数控制,防止了事故的再次发生。

QQ截图20190708090705.jpg

图6事故现象、原因及控制措施联系图

3.2脱硫系统超低排放改造

3.2.1增设喷淋层和改用单向双头式喷嘴

在WFGD工艺中,喷淋空塔的喷淋层设计一般不少于3层,交错布置。改造后,塔内增设2层喷淋层(共5层),塔高相应至少增加4m,塔重建高度为42.5m。最下一层喷淋层距吸收塔入口烟道上沿大于3m;喷淋层之间距离为2m,这可使喷淋层喷出的浆液有效地接触进入吸收塔的烟气,增加气液接触时间。顶层喷淋层距离除雾器底部大于2m,较大距离可促进细小雾滴聚集成大颗粒,更易通过重力沉降返回浆液池。

QQ截图20190708090650.jpg

图7单向单头式和单向双头式喷嘴

同时,喷嘴由单向单头式改用单向双头式,如图7所示;相同的喷嘴流量以及工作压力下,双头喷嘴的每个雾化喷射腔体需要雾化的浆液流量只是标准喷嘴的一半,因此也具有更小的雾化腔体,可获得更小的浆液雾滴颗粒平均直径(Sautermeandiameter,SMD值),为接下来的SO2吸收反应提供了有利条件。该电厂#1机组喷淋系统实际运行中喷嘴压力设置为80kPa,得到雾滴的SMD值为2000μm。雾滴离开喷嘴后,在周围空气流动作用下,发生二次雾化,双头喷嘴能够密集提升浆液喷淋层的二次雾化效果,在二次雾化过程中,包裹在原液滴表面的壳体被打破,内部浆液会转移到新的液滴表面,能够继续与烟气反应吸收SO2,最大限度地提升雾化液滴的反应效率。

3.2.2增设不锈钢托盘

根据美国巴布科克威尔科克斯公司(B&W)的托盘专利技术,在喷淋层下方设置一不锈钢托盘,托盘是带有小孔的格栅,如图8所示,使浆液停留时间大于4.3min,符合WFGD工艺对于浆液循环停留时间在3.5min以上的要求。烟气由吸收塔入口进入,形成一个涡流区;浆液从喷淋层喷射下来,通过合金托盘后的烟气向上流速降低,两者在托盘上掺混,形成泡沫层,泡沫层大大增加了气液接触界面,对SO2具有良好的吸收能力。同时,泡沫层使烟气在吸收塔内的停留时间增加,气液充分接触,强化了气液传质,从而有效降低了液气比,使烟气中的液滴携带量减少,减轻了除雾器的处理负荷,提高脱硫效率。

QQ截图20190708090637.jpg

图8喷淋层下方的合金托盘

3.2.3塔壁设增效环

塔壁设增效环,主要目的是防止烟气短路。SO2浓度在吸收塔截面上的变化是两边高,中间低,靠近吸收塔中心位置的浆液喷淋密度比吸收塔内壁位置的要高得多;同时,有部分浆液喷到吸收塔内壁,其气液接触面的传质效果非常差;这部分烟气没有经过足够的气液接触便离开吸收塔,造成了烟气沿吸收塔内壁的“逃窜”,从而影响了烟气脱硫效率。布置聚气环后,可以强化气流往中心流动,有效避免了烟气走廊的形成,如图9所示。

QQ截图20190708090623.jpg

图9吸收塔壁的增效环

3.2.4改用3级屋脊高效除雾器

吸收塔上部安装原装进口的3级屋脊高效除雾器,如图10所示。与原单级平式除雾器比较,屋脊除雾器适用于烟气流量变化大的场合,排水性能更佳,除雾效率更高;而且每个单元除雾器之间设有走道,便于维修和保养。

QQ截图20190708090601.jpg

图10屋脊式高效除雾器

3.2.5增加备用旋流子

在石膏旋流器的备用孔加装一个旋流子(改为四用二备),当吸收塔浆液密度居高不下时,可通过同时运行6个旋流子,提升石膏产量,有效降低浆液密度。

3.3脱硫系统运行参数控制

3.3.1控制吸收塔pH值和密度

吸收塔浆液的pH值和密度是WFGD系统的重要参数,直接影响运行工况。因此,操作时运行人员应严格控制塔内pH值在5.4~5.5左右,密度在1130~1140kg/m3之间,保证脱硫系统正常运行。同时,应定期通过化学方法对在线pH计、密度计进行校验,并与化验室仪表进行比对。

3.3.2添加相关药剂以提高脱硫效率

当出现入口烟气量和含硫量增幅较大时,可适当通过添加消泡剂加快化学吸收过程,但应缓慢添加并控制添加量;或者添加脱硫增效剂,提高脱硫效率,降低SO2排放浓度。

3.3.3提升氧化风机效率

当出现入口烟气量增幅较大时,应适当增加氧化风机运行台数,保证塔内CaSO3氧化和石膏结晶的正常进行,利于脱水。由于同时运行2台氧化风机可能导致其轴承温度剧烈升高,超过额定温度80℃,有跳闸风险;可以通过间断启动备用氧化风机增加空气量来达到加强氧化效果。

3.3.4加强除雾器清洗

当入口烟气量增幅较大时,应提高除雾器的冲洗频率,减少除雾器叶片表面黏结CaSO4.2H2O和CaSO3。同时,需要注意由于冲洗水增加造成的塔内水不平衡现象,必要时可增加废水排放量。

4结论

通过对某电厂4台机组的超低排放改造,机组脱硫系统SO2排放含量控制在35mg/Nm3以下,脱硫效率提高到99.2%;同时,通过严格控制脱硫系统运行参数,#1吸收塔再没发生除雾器堵塞、浆液溢流等现象。为解决燃煤电厂脱硫系统所出现的复杂问题提供了参考性经验。

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们