安全管理网

SBR工艺中短程硝化反硝化的过程控制

  
评论: 更新日期:2011年08月21日
   2.2 从生物活动的角度理解运行方式对产泥率的影响
  四种方式下生化反应强度的不同可由一个周期内SOUR随时间的变化得到验证。SOUR反映了生物活动强度[4]。从本实验测得的数据(图3)发现, SOUR与基质浓度、曝气强度有关. F30和分级-A的进水阶段,SOUR随基质量的增加而上升. 实际上在缺氧的情况下, 好氧生物的活动很低,而OUR是在混合液先充氧况下测得的[5], 这一阶段的SOUR值反映的是一种潜在生物活动能量。在反应阶段的前50分钟, 所有这四种运行方式的SOUR曲线均呈现一近似水平段. 这是在基质浓度饱和情况下, SOUR的最大值(记作SOURmax). 实验表明SOURmax亦与曝气强度有关。F30、IF方式曝气强度为1.3l/min, SOURmax为3.1 ´10-4mgO2/l-min-mgMLVSS;. 分级-A第一阶段曝气强度为2.6l/min, SOURmax高达近4.0´10-4mgO2/l-min-mgMLVSS; A-F30曝气强度为1.1l/min, SOURmax约为2.8´10-4mgO2/l-min-mgMLVSS。从图4中可见,在A-F30、F30、IF方式的曝气阶段初期,DO接近于零。这是因为,反应器在平均值的曝气强度下,供氧速率跟不上因强烈的生物活动引起的需氧速率。因而微生物活动受到抑制. 而分级-A的第一阶段曝气中, DO形成一突跃。这可认为在高于标准平均值的曝气强度下, 供氧速率可超过因强烈的生物活动引起的需氧速率。因此,微生物活动强烈, SOUR值较高.由此可见, 在分级-A方式下的反应初期,较高的溶氧水平、因较大曝气强度而加强的混合液搅拌和物质传递,加快了基质的生物降解,使微生物较早地进入内源呼吸状态,因此污泥产率较低。而在其它三种方式下,溶氧不足抑制了生物活动, 生物降解相对较慢,推迟了微生物进入内源呼吸状态,即微生物处于内源呼吸状态的时间较短,污泥产率较高。
图3. 一周内SOUR变化情况
图3. 一周内SOUR变化情况
 

 

 
图4.  一周内溶氧变化
图4. 一周内溶氧变化
  2.3 运行方式对污泥性质的影响及其分析
  实验显示, 四种方式下活性污泥的性质也不尽相同。图5是根据实测数据绘制的四种方式下活性污泥的沉降曲线。曲线前半段的斜率可表示污泥的沉降速率,而后半段的纵坐标值和斜率则反映了污泥的压缩性能。图中可见,
 
图5.    四种方式下活性污泥的沉降曲线
图5. 四种方式下活性污泥的沉降曲线
  IF、A-F30与分级-A方式下污泥的沉降性、压缩性均优于F30, 其中IF方式下污泥的沉降性、压缩性最好,A-F30与分级-A的相近, 居次。沉降性好, 在沉淀阶段有利于固液分离, 而压缩性好则有利于污泥浓缩与脱水。从浓度梯度角度看, 按IF方式运行, 废水瞬时进入SBR,混合液中的基质降解过程类似某一时刻进入连续、推流式反应器的一批混合液中的基质降解过程,浓度梯度大, 因而污泥性能好[6] 。进水时间越长, 反应器的f : r 比(进水:反应比)增大, 混合液中基质浓度梯度越接近完全混合反应器[7], 有利于丝状菌生长, 污泥性能越差. 因而F30、A-F30与分级-A方式下的污泥性能要逊于IF方式下的.
 
  图6为按分级-A方式运行的反应器(左)与按F30方式运行的反应器沉淀10分钟时污泥的状态。
图6.  分级-A方式下与F30方式下污泥的沉淀状态
图6. 分级-A方式下与F30方式下污泥的沉淀状态
  

结论

 
  SBR进水阶段的长短、是否曝气, 反应阶段曝气强度的分布都会影响活性污泥的产率与性质。较长时间进水和反应初期高强度曝气, 可使反应器污泥产率较低; 其中反应初期能克服需氧量的高强度曝气对降低污泥产率作用明显。快速进水方式下活性污泥的性能最佳。
网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们