3.2.4 生物硫化床
生物硫化床是高负荷的一种生物膜法,Arbi等用好氧的硝化滴滤和缺氧反硝化硫化床相结合的反应器,悬浮在表面的富含硝酸盐和溶解的有机物送到硫化床,处理效果良好。Jewell等在水产养殖水体循环中利用膨胀床的硝化和反硝化作用同时,处理BOD5、SS和氮,出水氨氮低于0.5mg/L。
3.3水产养殖技术的自然生物处理
用自然生物处理水产养殖水体主要有湿地、定塘和土地处理系统等,其优点是处理含氮和磷的水体,能达到比较彻底的处理效果。
3.3.1 湿地生态系统
人工湿地具有一定的污水处理能力,对氮、磷有机物悬浮物等的去除有良好的效果,人工湿地净化工农业废水已有大量研究,近年来,用人工湿地处理水产养殖废水取得一定进展。非集约化水产养殖的自然水域本身是一个典型湿地系统,具有良好的自净能力,只要合理利用和加强其自净能力,会有良好的环境效应和经济效应;Kruzie等综合土地处理湿地池塘水生植物系统进行水产养殖水体循环。Wood等利用人工湿地系统处理水体,湿地系统中藻类密度高,在地表水利负荷1315cm/d时,COD的去除率59.2%、NH+42N为34.6%、PO-42P-为3.19%和SS为78%;如果水力停留时间在3d,则COD的去除率79.4%、NH+42N为82.8%、PO3-42P为54.1%、蛋白质产率50t/hm2·a。Lin等用人工湿地处理水产养殖水体,在水力负荷为1.8~13.5cm/d之间,则NH+42N去除率为86%~98%,总无机氮(TIN)为95%~98%,磷的去除为32%~71%,出水NH+42N浓度<0.3mg/L,NO-22N<0.01mg/L。对于盐度高的水体,用耐盐性植物种植在沙性湿地上,可去除养殖水体中98%的总氮、94%的无机氮、99%的总磷和97%的溶解态磷。
3.3.2 鱼塘水生生态系统
鱼塘水生生态系统本身有很强的净污能力,在水产养殖水体的处理中完全可以利用鱼塘对污染物的净化能力来净化污水。养殖水体的综合利用主要是用池塘的自净能力和鱼类生理特性,如充氧、鱼藻共生系统、鱼类白天和晚上不同活动时间混养、耐污能力不同鱼类混养和对鱼类生理修正。Kirke从曝气方面进行了研究,对鱼塘采用风力曝气;Logsdon从改变水生植物结构着手,利用浮萍对氮和磷的吸收(1km2的浮萍能吸收约802kg氮和146kg的磷)和对重金属的累积能力处理水产养殖水体。Wang用双壳类去除藻类,沉降法去除悬浮物,通过虾塘、蚝形成水的循环利用。Umble等用鱼塘处理污水二级处理出水,利用二级处理出水提供的营养,调节营养比例(N∶P在16~23),使得水生植物繁殖,作为鱼类的食料。养殖水体的综合利用的安全是人们关心的问题,Adamsson等进行的研究结果表明,只要投加饲料成分恰当,影响不大,但从保守的观点来说,有待于进一步证实。
4水产养殖废水的循环利用工艺流程
进行水处理装置有多种,其结构各不相同,其工艺流程也不一样,下面介绍几种典型的流程。鱼池排水→集水池塘→氧化池→→增温增氧池→鱼池回用的工艺在德国使用较多,这种工艺流程中氧化池为生物转筒,水力负荷4.5~514m3/m3·d,沉淀池回流50%~100%到氧化池。鱼池排水→沉淀池→升流式生物滤池→淋水塔式增氧→加热、消毒→鱼池回用的工艺在加拿大使用较多,在沉淀池能够去除60%的SS,在升流式生物滤池的填料粒径为1~10mm左右,可以去除99%氨氮,新鲜水/回用水为1/9。鱼池排水→充氧→升流式石灰岩滤池→沉淀池→增氧→回用的工艺在美国使用较多,其中新鲜水/循环水为1/5。鱼池排水→升流式碎石滤池→降流式碎石滤池→增温池→回用的工艺在上海集约化水产养殖业水体循环中使用较为普遍,其中滤池水力负荷110.5~140.0m3/m3。鱼池排水→集水池→升流式沸石滤池→降流式沸石滤池→补充新鲜水、调温→鱼池回用在北京集约化水产养殖业水体循环中使用较多,其中滤池水力负荷为150~194m3/m3。
5生物工程在水产养殖废水处理中的应用
伴随着生物技术的发展,水产养殖业越来越多地运用生物工程技术来减少废水排放量和污染物数量。比如用微生物发酵生产和遗传工程技术将合成特定氨基酸的基因克隆进入微生物的细胞质中,然后借助微生物的增殖来生产蛋白质鱼类饲料,可以提高鱼对饲料的利用率,降低氮的排泄物,减少废水中氮的浓度;利用生物筛选技术和基因工程培育一些去污能力强的植物(特别是藻类)和微生物来净化水产养殖废水;利用生物工程对鱼类进行生理修正,使鱼类提高耐污能力和减少排泄物,比如Phelps培育的鱼类对沙门氏菌属形成抗体,这种鱼类就可以在污染水体中生长。郑耀通等对具有高效净化水产养殖水体的紫色非硫光合细菌进行了分离和筛选,筛选出来的紫色非硫光合细菌既有很强的净水能力,又是鱼类的饲料。目前国内的研究主要集中在光合细菌在水产养殖水体净化中的应用。
6 展望
展望随着世界性水资源短缺和环境污染的日趋严重,今后各国将采用封闭式循环水养殖方式。其中,养殖废水的综合利用与无害化排放技术具有极大的研究开发价值和广泛的应用前景。虽然生物滤池去除氨氮和有机物的效果比较好,却会使水中硝酸盐含量增加,硝酸盐的毒性虽比氨氮低,但过度积累同样会影响鱼类生长,而且含氮高的废水排放到环境中,又会引起二次污染。2l世纪的水产养殖将由单一型向生态型发展。近年来,美国、丹麦、日本和中国等国家发展鱼菜共生、鱼藻共生系统;利用养殖废水培育蔬菜、花卉、水果和藻类,既能最大限度地提高水产品和蔬菜等的产量,又能净化水质,把污染降至最低程度,从而形成小环境生态系统良性循环。