安全管理网

循环经济背景下污水厂污泥中铝盐的分离与回收技术研究进展

作者:戴晓虎  
评论: 更新日期:2024年08月09日

研究背景

近年来,随着城市化进程加快以及经济的快速发展,城市生活污水排放总量迅速提高。为了改善水环境质量,保护自然水资源,我国对于城市污水处理提出了更高的要求。在城市污水处理厂中,污水中有机物、氮、磷等污染物通常采用生物处理与化学处理法去除,其中化学处理是指向污水中投加混凝剂、絮凝剂等化学药剂,通过化学反应实现悬浮颗粒、磷等污染物的去除。污水的化学处理具有反应速度快、效果稳定、能耗低等优点,对保障污水处理厂出水稳定达标具有重要的意义。铝盐、铁盐、钙盐等金属混凝剂是污水处理、污泥处理中最常用的化学处理药剂,其中铝系混凝剂具有化学性质稳定、对温度和氧化还原不敏感等优点,因此广泛应用于污水处理厂中。现阶段污水处理过程中,铝系混凝剂呈单向流动的线性消耗模式,即在污水处理厂前端大量投加,经过复杂反应后转移至污泥中,最后随污泥进行最终处置。这种粗放的铝盐消耗模式不仅会导致资源的浪费,也增加了污泥处置的负担,具体分析如下:

1)矿产资源的消耗:随着污水处理量的增加,我国铝盐混凝剂的需求量随之提高,因此需要消耗大量不可再生矿产资源用于生产铝系混凝剂。据统计,我国聚合氯化铝(PAC)的年需求量已超过1万吨,市场需求量逐年增加。

2)污水处理成本高:为保障污水厂出水质量,污水处理中金属混凝剂的投加通常是过量的,造成污水处理的药剂成本增加。此外,金属混凝剂的投加还会使污泥产量提高20%~75%,进而导致后续污泥处理处置成本的提升。

3)污泥中磷与有机质资源化困难:污泥中50%以上的磷与铝铁盐混凝剂通过化学键结合,从污泥中回收磷资源时,铝盐会与磷发生共沉淀,进而导致磷产品农用价值降低。此外,研究发现,污泥中铝盐的存在会抑制污泥的水解、厌氧发酵性能,因此不利于污泥中有机质的回收。

4)污泥处置困难:含铝污泥及污泥灰分的土地利用会对人体健康与环境生态产生不良影响。一方面,铝盐对植物具有毒害作用,且能够在植物中积累,进而影响土壤生态与农业生产。另一方面,研究表明大量摄入铝离子会引起人体大脑中胆碱能信号机制、磷酸肌醇信号通路改变,可能诱发阿兹海默症。

综合上述分析可知,污水处理厂中传统的铝盐投加-排放的消耗模式不仅直接导致污水、污泥处理成本提高,还会导致污泥中磷资源回收困难。因此,从污泥中分离、回收铝盐,以及进一步回收磷组分、去除重金属可能是解决上述问题的重要突破口,对实现污泥无害化与资源化具有重要的现实意义。然而,现阶段关于铝盐回收的研究多针对给水污泥,对污水污泥研究较少,其主要原因在于污水污泥成分更为复杂。本文首次对污水处理厂中铝盐的投加、反应过程,以及污水污泥中铝盐的分离、回收技术进行综述;总结了污水污泥中铝的释放、分离和回用技术研究进展,并同步分析了不同情景下污泥中磷组分的分离与回收潜力;最后对污泥中铝盐回收技术的优化方向,以及污泥中铝盐与磷同步回收系统的构建进行展望。本综述为污水厂内铝盐的闭环管理提供参考,有助于推动污泥处理向更加符合循环经济与绿色发展的可持续发展模式转化。

摘 要

污泥资源化是我国解决资源与环境问题、实现减污降碳的重要举措。污泥中铝盐组分的回收和循环利用是推动污水处理厂绿色发展的有效措施,也是同步提高污泥中磷、有机质等资源高效回收的重要途径。本文综述了铝系混凝剂在污水污泥中的物质流向和反应机制;基于污泥中铝盐的赋存形态分析,以铝盐释放-分离-回用的技术路线为核心,全面回顾了污泥中铝盐回收的相关技术与研究现状,并探讨了其对磷回收的影响。其中,重点分析了铝盐的多种分离技术以克服污泥中磷、重金属在酸性条件下共溶的障碍,包括顺序沉淀、离子交换树脂、液液萃取、硫化物沉淀、Donnan膜以及电渗析工艺。本文提出了铝盐与磷的联合回收工艺,针对污泥中铝盐回收现状及问题,展望了铝盐回收效率进一步提高、全链条经济效益及铝盐混凝剂循环利用综合评估等热点研究方向,旨在推动构建资源化水平更高、更符合循环经济模式的污水及污泥处理系统。

01 污水处理过程中铝盐的源与汇

1. 铝系混凝剂的种类与特性

铝系混凝剂是污水处理厂中最常用的化学药剂,常用作化学除磷、有机物去除和污泥调理等。常用的铝系混凝剂根据分子量大小可分为小分子混凝剂和大分子混凝剂,其中小分子混凝剂包括结晶氯化铝(AlCl3·nH2O)、硫酸铝(Al2(SO4)3),硫酸铝钾(Al2(SO4)3·K2SO4·24H2O)以及铝酸钠(NaAl2O4);高分子混凝剂包括聚合氯化铝PAC([Al2(OH)nCl6-n]m)和聚合硫酸铝PAS([Al2(OH)n(SO4)3-n/2]m)等。聚合氯化铝PAC具有丰富的结合位点,对氧化还原、pH、温度等环境变化不敏感,且电中和性能高、污泥产生量少,因此广泛应用于污水和污泥的实际处理过程中。PAC中铝的存在形态非常复杂,一般可根据聚合度(Ferron分析)分为三类:Ala主要由单体铝和低聚态铝组成,Alb主要由中聚合物态铝组成,Alc主要与高分子态铝有关。不同形态铝的性质不同,与悬浮絮体、污泥颗粒间的相互作用也有所不同。例如,Alb和Alc带正电,且比Ala更稳定,Ala的加入则会导致污泥显著酸化。

污水厂中铝盐的投加位置与实际污水处理工艺有关,不同投加位置对应不同的功能:在初沉池进水前的化学强化一级处理单元投加,主要用于去除污水中的胶体物质;在曝气池、曝气池末端中投加,主要用于协同絮凝;在二沉池出水后投加,主要用于化学除磷;在污泥浓缩池中投加,主要是用于促进污泥加速沉降以及后续脱水。不同位置投加的铝系混凝剂反应结束后,最终转移至污泥中,随污泥进行后续的处理处置。因此,明确铝盐在混凝沉淀、化学除磷过程中的反应机制,识别铝盐在污泥中的赋存形态,对于污泥中铝盐和磷的分离、回收至关重要。

2. 铝系混凝剂的混凝过程

污水中存在大量悬浮杂质和胶体颗粒,在布朗运动与静电斥力的作用下呈现出稳定状态。铝盐混凝剂的加入可以有效破坏溶胶稳定性,使水中的悬浮颗粒物形成较大的絮凝体后从水相中分离。铝盐在水溶液中首先形成水合离子,以H2O分子为配位体通过水解作用逐渐生成络合离子。铝盐络合离子的羟基配位体间会发生桥联作用,从而使铝离子由单核羟基络合物结合为多核羟基络合物。在水解和羟基桥联的交替作用下,铝离子最终形成氢氧化铝沉淀。因此,带正电荷的铝盐络合离子可以通过电性中和作用,实现污水中带负电的胶体颗粒的失稳与凝聚。同时,铝盐在水中形成高聚合度的多羟基化合物的絮体,这些尺寸较大的絮体可以通过吸附、卷扫作用使水中胶体颗粒发生共沉淀。

污水处理过程中影响铝盐混凝效率的因素包括药剂种类、pH值、投加量等。例如,PAC与小分子混凝剂反应过程有所不同。对于PAC而言,Al3+的水解过程发生在产品制备过程中,产品以聚合物和Al(OH)3的形态存在于水中,因此混凝效果更好。pH值通过影响铝盐的溶解度、铝盐形态,以及污水中絮体稳定性等综合因素进而影响铝盐的混凝效果。在污水处理厂的实际应用中,药剂投加量是影响混凝效果的最重要因素之一,投加量低会导致电中和与吸附架桥效应较弱,过量的混凝剂则可能会导致絮体致密度低,因此需要通过烧杯实验确定合适的药剂投加量。

值得注意的是,污水有机物去除和污泥脱水前铝盐调理的混凝机制相似,但处理条件与目标不同。在废水处理中,铝系混凝剂起到促进有机污染物的聚集和分离作用。而对污泥脱水而言,铝盐调理主要是为了强化污泥中水与固体组分的分离,同时提高污泥的脱水能力。在污泥脱水过程中,铝盐混凝剂通过电中和作用,通过压缩双电层来破坏污泥的胞外聚合物结构,进而使污泥自由水含量增加,脱水性能显著提高。此外,聚合铝盐混凝剂还被证明可以去除污泥胞外聚合物中的粘性蛋白物质,通过降低污泥粘性提高污泥的过滤性能。然而,铝盐混凝剂调理污泥后,通过板框、离心等方式进行污泥脱水仅能将污泥含水率降低至80%,剩余大量水分仍难以脱除,主要原因在于污泥胞外聚合物中含有多种亲水性组分与官能团(如细胞外蛋白)。且污泥具有较强的可压缩性,在污泥脱水过程中絮体间微小排水通道逐渐被堵塞,这限制了污泥中水分的进一步脱除。

3. 铝系混凝剂与磷的反应

污水中除有机物外还含有氮磷等营养物质,其中磷的过量排放会导致严重的水体富营养化问题,因此污水处理厂通常需要通过化学除磷以保障出水总磷达标。铝系混凝剂可以与污水中的磷生成难溶性沉淀物,进而实现污水中磷的高效、稳定去除。铝盐除磷的反应机制包括化学沉淀与水解吸附两种,化学沉淀是指铝盐直接与污水中的磷结合生成Al-P沉淀,如AlPO4、Al(PO3)3等;吸附过程是指铝盐通过自身水解产生一系列多核配合物,利用它们较大的比表面积和较高的正电荷实现磷的吸附与去除。许多研究表明,污水中正磷酸盐的去除主要是通过氢氧化铝的吸附作用去除,而非通过磷酸铝沉淀过程,且污水中磷酸盐与铝盐按1:1沉淀仅在磷酸盐大量存在时发生。对于高分子混凝剂聚合氯化铝PAC而言,铝盐除磷机制被证明与铝盐形态有关,PO43-的去除主要是通过与Alb反应,而与Ala和Alc关系不大。此外,污水中磷包括正磷酸盐、有机磷、聚合磷等多种形式,在铝盐除磷过程中不同形态的磷的去除率已被证明与Al/P比值有关。研究发现,当Al/P从8降低至3时,正磷酸盐与聚合磷去除效率下降,而有机磷去除效率增加。

部分学者针对污泥中磷和铝盐的赋存形态开展了相关研究。研究发现,在PAC处理后的污泥中,98%以上的P与Al结合,其中约70%与Al强结合,其余大多数P则通过配体交换与Al形成内球配合物。在低pH条件下,PAC表面发生高度质子化,磷被吸附形成了Al-P外层络合物。此外,不同AlPs物种的晶体结构不同,因此化学性质有较大差异,例如Al(PO3)3为八面配位体铝,而AlPO4为四面配位体铝,因此AlPO4结构比Al(PO3)3稳定,对磷的结合强度更高。

02 污泥中Al/P沉淀的溶解释放

污泥中Al-P沉淀物的溶解释放是铝盐回收的第一步。基于前述铝盐的混凝、除磷机制可知,污泥中铝盐的赋存形态主要包括氢氧化铝沉淀、磷酸铝沉淀、亚磷酸铝沉淀,以及铝的氧化物等。这些沉淀物的溶解度受pH值影响显著,因此铝盐释放通常采用酸化浸出和碱化浸出两种。污泥中Al/P沉淀释放方式的选择除考虑铝盐的释放外,还应充分考虑后续对污泥中磷回收以及污泥处理的影响。

1. 酸化浸出

酸化浸出法具有操作简单、溶出效率高的特点,是污泥中铝盐释放的最常用方法。在酸性条件下污泥中的铝盐沉淀物溶解为Al3+,从固相沉淀中转移至液相中,反应过程如式(1)—(3)所示。污泥中铝盐的溶解效率随着pH的降低而显著提高,最佳酸化pH值范围为1.5~2.0,铝盐释放率为70%~90%。污泥中铝盐的酸化浸出通常采用盐酸或硫酸两种无机强酸,铝盐释放率高,污泥增量小,同时提供的氯离子和硫酸根离子有利于将溶出的铝离子转化为混凝剂产品。两种无机酸处理污泥时铝盐的释放率差异不大,主要原因在于硫酸根与氯离子对铝离子的络合强度均较弱。当以污泥焚烧灰分为处理对象时,除pH值外,铝盐溶出效率还与液/固比有关。液/固比提高会增加污泥灰分与酸的接触效率,从而提高铝盐的释放率。当液/固比为100 mL/g时,污泥灰分中铝盐的释放率达到了94.6%。此外,值得注意的是,污泥酸化过程中,随着pH值的降低,污泥中AlPO4和Al(OH)3两种主要铝盐沉淀物的化学键均会发生断裂,因此基于污泥酸化过程Al/P的溶解释放情况,可以明确污泥中不同的铝盐沉淀物的溶出机制。在污泥酸化过程中,铝盐先从Al(OH)3溶解释放,当pH值小于3时AlPO4开始溶解。

值得注意的是,污水污泥中的磷、重金属、有机物等组分在酸性条件下会同步溶解释放。酸化浸出过程污泥中的无机磷溶解,同时污泥胞外聚合物水解以及细胞破裂会释放聚合磷,pH为2时,磷的释放效率为36%~50%,有利于后续磷资源的回收。因此,酸化浸出法可以同时实现污泥中铝和磷组分的高效浸出,为了避免重金属共溶导致回收产物被污染,后续可以通过分步沉淀、离子交换、膜分离等物理-化学方式实现铝盐与磷的选择性分离。

1.jpg

2. 碱化浸出

污泥的碱化处理可以使磷酸铝、氢氧化铝沉淀溶解为偏铝酸盐释放至液相中,同时避免重金属共溶(<1%)的问题,因此有利于污泥中铝盐和磷的回收,反应过程如式(4)、(5)所示。与酸性浸出相似,污泥中铝盐的释放效率与pH值、L/S比值、反应时间有关。铝盐溶出率随pH值的升高而增加,当pH值约为12~13时,污泥中铝盐溶出率约为60%~80%。值得注意的是,污泥碱性浸出的药剂成本较高。氢氧化钠的成本是硫酸的两倍,而采用氢氧化钙碱化处理时,铝盐率较低,在pH为11.4时铝盐的回收率仅为50%。

尽管污泥碱化学法处理对于铝盐的浸出表现出较高的选择性与释放率,但不利于后续磷的回收以及污泥的处理处置,且药剂成本显著高于酸性,从而限制了该工艺的广泛应用。对于磷回收而言,碱化浸出法对污泥中Al-P沉淀的溶解情况还与钙的含量有关,铝盐的释放效率随着Ca/P的增加而降低。主要原因在于污泥中的磷灰石磷(Ca-P)不溶于碱性环境,导致污泥直接碱化学处理过程中磷的释放率低,仅为0~35%,不利于后续磷资源的回收。此外,对于污泥处理而言,与酸处理污泥相比,碱处理后污泥CST与SRF值随着pH的增加逐渐提高,表明污泥脱水性能显著恶化。对于铝盐混凝剂的回收而言,碱化处理组中Al/COD为0.3,即碱化处理获得的铝盐溶液中溶解的有机物浓度明显大于酸处理组(Al/COD为1.0~3.0),这可能会对铝盐混凝剂的可重复利用性产生不良影响。因此,从污泥整体资源化的角度来看,酸化浸出的效果较碱化浸出更为理想,应用也更广泛。

2.jpg

03 铝盐的分离

污泥经过前述酸/碱化学处理后,污泥浸滤液可通过重力沉降、加压过滤、离心、膜过滤等方式与污泥絮体分离。为了提高回收铝盐产品的纯度,提升磷的联合回收效率,避免重金属等组分的负面影响,需要进一步分离污泥酸性浸滤液中的无机组分,在保障铝离子高效回收的同时,实现污泥中磷资源的回收以及重金属的去除,技术路线如图1所示。

1.jpg

1.顺序沉淀法

污泥中磷、重金属等组分在酸性条件下共同溶解是导致铝盐回收的主要问题。为了避免无机组分之间共沉淀的问题,部分学者将污泥的酸性浸出与碱性浸出相结合,提出通过顺序沉淀法实现污泥铝、磷分级回收的新型湿化学工艺。顺序沉淀法首先将富铝污泥进行酸化处理,调节其pH值至2左右,使污泥中磷、铝、重金属等无机组分充分溶解并转移至液相中;分离酸性浸出液并向其中加碱调节pH值至4,磷酸铝沉淀生成后进行固液分离。此时,液相组分主要成分为重金属离子,后续可通过加碱沉淀后去除;固相组分主要成分为磷酸铝,将其加碱溶解后投加钙盐即可生成偏铝酸盐离子和磷酸钙沉淀,从而实现铝和磷的进一步分离,反应过程如式(6)-(8)所示。

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们