安全管理网

强化电絮凝技术的基础、现状和未来展望

作者:戴常超 等  
评论: 更新日期:2024年12月03日

4.1.2 光伏电源

实际使用中,传统电絮凝的电源需要通过变压器、整流器和过滤器将交流电转换为直流电。而在电力短缺、位置偏远的地区,环境压力和经济投入等问题会导致传统电絮凝技术难以应用。

虽然以目前的技术来说,光伏电源能源利用率相对较低,但其具有投资和运行成本低且更为环保的优势。因此,在特殊地区基于光伏电源的强化电絮凝技术表现出良好的可持续发展性。

D. VALERO等在2008年首次进行了通过光伏阵列供电驱动的电絮凝研究,论证了直接由光伏阵列供电的电絮凝系统的可行性。

李俊聪等以能直接输出低压直流电的光伏电池作为电源,使用电絮凝工艺进行了新农村微污染水体中磷的治理研究,验证了光伏电源驱动的电絮凝工艺在农村区域具有良好的实际应用价值及可持续发展前景。

2017年,Shunxi ZHANG等通过光伏驱动电絮凝技术去除废水中镍,在光照强度为(750±30)W/m2,处理时间为40 min时,镍去除率接近100%。

王航宇等进行了太阳能电池板和电絮凝设备的耦合设计及工艺优化,极板数量和光照时间是影响油田污水处理效率的主要因素,并且太阳能可提供足够反应装置稳定运行的电能,具备替代传统电絮凝电源的能力。

4.1.3 空气阴极

传统电絮凝通常是使用铁、铝和不锈钢等作为阴极,主要起到构成系统回路的作用。而空气阴极具有疏水气体扩散层,电极一侧直接暴露在空气中,从而实现无源氧扩散,并进一步进行二电子反应达到催化降解污染物的效果。

田雨时通过使用辊压活性炭空气阴极,构建了迁移电场辅助空气阴极电絮凝系统,以自主富氧方式突破了传统电絮凝电耗大和曝气束缚等问题,在处理污水处理厂初沉池生活污水的过程中,氨氮和磷酸盐去除率超过99%,COD去除率为73.5%,电能消耗为1.8 kW·h/m3。

Yanxiao SI等使用空气阴极产生(3.7±0.1) mg/(L·h)的H2O2,在与Fe(Ⅱ)的相互作用下间接促进了As(Ⅲ)的氧化。当电流密度为4 A/m2时,空气阴极电絮凝的平均槽电压为1.0 V,远低于传统电絮凝的1.9 V。尽管空气阴极的价格要比不锈钢阴极高出18%,但整个系统的能耗降低了74%,更低的能耗有效促进了基于空气阴极的强化电絮凝技术的实际应用价值。

4.1.4 无线技术

传统电絮凝通常是通过欧姆接触(即导线)使电极和外电路之间建立连接,而电极在与导线相互接触时,接触界面受到的腐蚀应力较大,使得牺牲电极在接头区域更容易受到腐蚀。

针对这种问题,Zhenlian QI等提出了无线电絮凝技术。这项技术以铁板或者铝板作为牺牲阳极和阴极,同时使用2个石墨板作为驱动电极,电场引起的电位差使阳极溶解产生电絮凝作用。

这项实验证明产生的总铁浓度只与双极的几何构型有关,和电化学参数无直接关系,且平行电场放置的双极较垂直放置的双极的总铁浓度高出84.6%,“H”型双极构型能够节省超过40%的电极材料成本。这项技术的优点在于可以解决电极连接问题,并且可以设置任意数量“H”型双极装置进行工作,目前需要进一步研究更大水量下系统的可行性。

4.2 电极技术

4.2.1 电极材料

电极反应是电化学技术的核心,不同电极材料具备不同的电化学特性,因此选择合适的电极能够有效提升电絮凝技术处理污染物的效率。

传统电絮凝最常使用的阳极材料为铝和铁,从众多科学研究结果看,铝电极的絮凝效果更佳,而铁电极的经济适用性更强。因此,铝阳极多用于饮用水处理,铁阳极多用来处理各类工业废水和生活污水。

1.jpg

在电絮凝领域,研究者的目光主要集中在铁和铝上,其他材料的研究极少。自2010年后,部分学者逐步进行了其他可溶解性金属阳极的研究,如镁、锌、铜和钛等。

D. OUMAR等研究了镁作为阳极电混凝耦合生物过滤技术处理垃圾渗滤液的过程,在电流密度为10 mA/cm2,处理30 min后COD去除率和脱色率分别达到了53%和85%。

在美国饮用水水质标准中,限制铝离子的质量浓度为0.2 mg/L,镁离子的质量浓度高达30 mg/L,而中国饮用水水质标准甚至对镁离子没有限定。这项研究为目前难以解决的铁铝残留问题提出了另一条解决方式,可以通过共同使用多类型牺牲阳极保证水质污染物去除率达标,同时金属离子残余量符合标准。

M. S. SAFWAT等使用铜电极作为阳极处理了实际印刷废水,并与铝阳极进行了比较研究,结果表明铜电极对污染物的去除效果优于铝电极;当电流密度为21 mA/cm2时,铜电极比铝电极的COD去除率高出约10%;当反应进行90 min时,铜电极对于总溶解性固体的去除率为24%,而铝电极仅能达到7%。

H. K. SHON等首次使用了钛板作为电絮凝牺牲阳极,在电流密度为8.3 mA/cm2,搅拌速率为700 r/min,pH为4的条件下,DOC的去除率达到60%~70%,同时电解钛板生成的絮凝剂具有去除尺寸更小有机物的特点,而且絮凝后的污泥在低温煅烧后可作为二氧化钛催化剂应用于光催化降解技术中。这项研究扩展了阳极材料的领域,同时对于絮凝污泥的后处理提供了新的途径。

基于电极材料的强化电絮凝技术表现出了更大范围且更高效的污染物处理能力,并具备了传统电絮凝不具备的一些新型后处理手段。

除使用纯金属阳极外,也可将金属合金作为电絮凝阳极。金属合金相对于单金属来说,电化学性能显著改善。合金化能有效促进电极表面钝化膜的活化溶解,增加电极使用寿命并减少系统的能耗。

D. ADELAIDE等研究发现Al-Mg合金和Al-Zn-In合金较纯Al阳极表现出更优秀的废水处理效果。Al-Mg合金处理实际硝酸盐废水15 min即可达到完全去除。同时,纯Al阳极表面会被动形成稳定的氧化膜,而合金对这种被动钝化行为的敏感性更弱,且更易于溶解。

4.2.2 电极形状

电极的几何形状会影响反应器的构型,除污染物去除性能上的差异外,还会影响反应器的放大、运行及经济性。传统电絮凝研究中最常使用的为平板电极,而近十年来学者们还进行了棒状电极、圆柱电极、旋转电极和穿孔电极等方面的研究见图4。

1.jpg

M. MALAKOOTIAN等使用铁棒电极作为阳极进行了电絮凝法去除饮用水硬度的实验室研究,如图4(a)所示,电极尺寸直径2 mm。由于棒状电极与平板电极适用的反应器构型相近,因此处理污染物的效果也较为相近。

这类电极需要完全浸没到水体内部,并通过搅拌的方式使其均匀传质。由于金属板本身的不均匀腐蚀特性,通常会有难以拆卸的问题。

U. T. UN等设计了一种圆柱形阳极搭配旋转叶轮阴极的电极构型处理水中氟化物。由于反应器和阳极均为圆柱形,因此能够将阴极放置在阳极的内部。除了能使用如图4(b)所示的旋转叶轮阴极,也可以使用金属棒作为阴极。这种电极构型利于控制电极间距,并且在更换电极方面也表现出一定的优势。

A. S. NAJE等设计了一种特殊的能够同时处理纺织废水和制氢的电絮凝反应器——旋转阳极反应器,电极结构如图4(c)所示,内部为搭配叶轮的柱状阳极,外侧套入多组圆环作为阴极,这种构型下电极总活性面积可达到500 m2;同时,通过调整阳极的转速,系统总电耗仅为0.56 kW·h/m3,比传统电絮凝构型更为经济。

D. O. AVANCINI等考察了电絮凝过程中穿孔电极处理废金属加工乳液的效果,穿孔电极如图4(d)所示,这些孔的存在会导致水体pH变化率增加,会更快速达到最终稳定状态;同时,孔的数量会影响污染物去除效率,孔数的增加明显增强了电絮凝系统对污染物的去除能力。

研究还发现在孔附近不存在金属腐蚀现象,而孔的存在会影响电极整体腐蚀坑的平均尺寸和分布。基于电极形状的强化电絮凝技术是其实际应用的基本保障,合理的电极结构与反应器构型的搭配,在保证提升污染物的去除效率以外,能促使其实际运行的长期稳定。

4.3集成技术

4.3.1 电絮凝-活性炭吸附技术

活性炭材料通常具有较大的比表面积,最高可超3 000 m2/g,同时其表面也具有丰富的官能团,如羟基、羧基和内酯基等,因此对各类污染物都具有极强的吸附能力。

活性炭材料的前驱体种类众多(如稻壳、秸秆、树叶和木屑等),制备价格低廉且水处理效果出众。因此,考虑到电絮凝技术本身存在能耗较高的问题,基于活性炭吸附的强化电絮凝技术有利于降低系统成本。

N. V. NARAYANAN等使用间歇式搅拌电絮凝反应器,研究了铁铝电极结合颗粒活性炭吸附去除合成废水中六价铬的可行性,研究发现在较低的电流密度下,添加颗粒活性炭(GAC)作为吸附剂能明显提高六价铬的去除率。

M. S. SECULA等考察了4种不同商用活性炭与电絮凝联用技术与传统电絮凝技术对水溶液中靛胭脂脱色能力和运行成本上的差异,得出了与N. V. NARAYANAN相近的研究结果,在较低的电流密度和工作时间下,加入吸附剂对污染物的去除效果更佳;

这种去除效率的提升根本在于活性炭材料的化学结构和性质,L27活性炭具有较大的比表面积以及丰富的酸性表面官能团,因此在耦合过程中表现出了最优异的性能;

同时,在反应进行90 min时,传统电絮凝去除单位污染物的能耗为3.41 kW·h/kg,而EC/GAC强化技术的能耗仅为1.35 kW·h/kg。因此,这种强化电絮凝技术适合替代传统电絮凝。

4.3.2 电絮凝-超声技术

超声技术能够有效提高电絮凝处理污染物过程的整体性能。超声过程可以破坏沉积在电极表面的固体层及降低电极表面双电层的厚度,减缓阳极的钝化现象;同时,能够使电极表面生成缺陷,进一步活化电极和电极反应区的离子。但超声也可能破坏胶体颗粒的结构及表面的吸附层,因此需要合理控制超声功率和频率。目前的研究发现超声能够辅助自由基的形成,机制如下:

1.jpg

超声过程有·OH、·H和HO2·等自由基生成,自由基的存在能够促进有机物的降解。但实际上使用超声降解有机物的研究极少。

Jiangping LI等针对精细化工除磷过程中存在的问题,提出了电絮凝与超声共同处理的方法,在电絮凝最佳反应条件下超声10 min后,合成废水中的总磷由86 mg/L降低到0.4 mg/L,去除率达到99.6%,此时超声功率为4 W/cm2,频率为20 kHz;

对比而言,单一电絮凝处理下污染物的去除率仅为81.3%,单独超声对污染物几乎无去除能力。超声促进了絮凝剂在溶液中的扩散,加快了电极表面钝化层的破坏,同时,超声强化了电场传递过程,降低了电絮凝体系的电位,减弱了反应体系中的浓差极化。因此,两者的协同作用有效加强了高磷废水的净化,较单一电絮凝的处理时间缩短了2倍。

超声除了促进电絮凝絮体聚集和空化作用对电极表面钝化层进行清洗外,电絮凝过程中产生的大量微气泡具有增强超声空化效应的能力。

余晟等使用超声-铁电阳极工艺处理300 m3/d的酯化淀粉调节池废水,整套工艺流程为“调节池+超声-电絮凝装置+滤池+活性炭滤池”,其中铁阳极电压为10 V,超声工作频率为30 kHz,此工艺运行180 d出水稳定,完全符合《淀粉工业水污染物排放标准》(GB 25461—2010)间接排放标准;经企业实际效益核算,运行成本减少(0.84±0.25)元/m3。

4.3.3 电絮凝-臭氧技术

臭氧是一种强氧化剂,由于臭氧分子中的氧原子具有强亲电子性和亲质子性,因此能直接氧化有机物或者无机物达到污染物快速去除的目的。而除了直接氧化污染物外,臭氧也会形成·OH等强氧化基团,进行有效和非选择性的污染物去除。

1.jpg

何志桥等使用臭氧强化电絮凝处理直接耐晒大红4BS模拟染料废水。在电流密度为15 mA/cm2和O3流量为0.6 L/h条件下处理100 mg/L 4BS,50 min后脱色率达到94%以上,所需时间比单独电絮凝工艺/臭氧工艺达到相近脱色率缩短了70 min。

P. ASAITHAMBI等使用臭氧辅助电絮凝处理酒厂废水,主要考察了铁铝不同组合下联合工艺的协同效应,对色度和COD的去除率较单一电絮凝和单一臭氧技术有明显提升;当电流密度为3 A/dm2,初始COD为2 500 mg/L,臭氧流量为15 L/min时,COD去除率达到83%,能耗为5.1 kW·h/m3,处理2 h后能够完全去除色度;在臭氧协同电絮凝处理污染物过程中,Fe2+与O3催化反应生成中间产物FeO2+,Fe2+还会催化O3分解生成·OH。具体反应机制如下:

1.jpg

4.3.4 电絮凝-光/电催化氧化技术

除臭氧氧化技术外,根据产生自由基的方式和反应条件的不同,高级氧化技术还包括电化学氧化、Fenton氧化和光催化氧化等。

这些技术对有机污染物具有更显著的去除能力,在与传统电絮凝技术组合使用后,能够相互弥补缺点,扩大可处理污染物范围,是目前具有很大发展潜力的强化电絮凝工艺之一。

Sheng LIANG等发现铁阳极原位生成的Fe2+和混合金属氧化物(MMO)阳极原位生成的O2反应得到的·O2-能够有效将亚磷酸盐氧化为磷酸盐。

以Fe和MMO作为双阳极,电流为100 mA,反应60 min后,亚磷酸盐的去除率达到74.25%,而在无MMO电极参与下污染物去除率低于23.41%,在化学混凝中去除率低于5.03%。并通过电子自旋共振实验证明了·O2-是整个EC-EO体系中污染物更高效去除的关键。

J. HEFFRON等进行了连续电絮凝和电氧化抑制饮用水中病毒的研究,发现天然有机物和浊度会抑制MS2和ΦX174两种噬菌体在电氧化阶段的处理效果,因此联用电絮凝技术作为前处理工艺有效提升了对模拟地表水中的病毒的抑制效果。J. HEFFRON推测絮凝/过滤、亚铁消毒和电氧化消毒的协同附加效应实现了更有效的病毒减少。

M. BOROSKI等使用电絮凝和非均相TiO2光催化联合处理制药和化妆品行业废水。电絮凝过程去除了大部分的胶体有机物和悬浮物,难降解有机物仍然存在于出水中。在随后联用多相光催化技术,难降解有机物被降解至矿化。单一电絮凝仅将初始COD为1 753 mg/L的废水处理至160 mg/L,在联用UV/TiO2/H2O2后可将COD降低至50 mg/L以下。这种基于光催化的强化电絮凝技术在工业规模中表现出了潜在的应用价值。

4.3.5 电絮凝-膜生物反应器技术

膜生物反应器(MBR)是将膜分离技术与生物化学技术相结合的一种生物水处理技术,是当前处理高浓度有机废水以及中水回用最有前途的污水处理技术之一。其特点是占地面积小、管理简单,尽管膜价格逐年有所降低,但MBR技术的成本依然是制约其发展的主要因素之一。

以电絮凝作为预处理工艺则能有效增加MBR技术的膜使用寿命。因此,基于膜生物反应器的强化电絮凝技术成为了目前的研究热点之一。

王祎涵等对比了EC-MBR一体式反应器与单独MBR反应器处理生活污水的水质情况,电絮凝的加入使COD、氨氮和总磷的去除率比仅运行MBR时有了明显的提升,电絮凝原位产生的Fe2+能有效增强污泥的活性,并进一步改善污泥沉降性能。

K. BANI⁃MELHEM等进行了电絮凝-膜生物反应器集成工艺处理中水的研究,比较了连续运行24 d下,有无电絮凝参与的膜生物反应器在恒定跨膜压力下对污染物的去除效果。

结果表明,将电絮凝工艺与膜生物反应器相结合,不仅是一种有效的中水处理方法,也是提高膜过滤过程整体性能的有效方法。组合工艺与单独膜生物反应器运行相比,膜污染降低了13%,对COD、浊度和色度等去除性能有较小的提高,而在磷酸盐去除率上有接近30%的提升。

05 总结和未来展望

强化电絮凝技术是一种符合如今时代特征的环保型水处理工艺,具有广阔的发展前景。除具有传统电絮凝的原位无二次污染、有效成分含量高、污泥量少、装置简单和易于实现自控等优点外,还表现出更广的可处理污染物范围、更高的污染物去除效率和更低的能源消耗等特点。

强化电絮凝技术是在传统电絮凝技术的三个方面上进行升级:

一是对机理进行了更深入的探讨,并提出了新的观点,为新型水处理技术的发展提供了理论依据;

二是在电极材料/结构和反应器构型的研究上进入了全新的发展阶段;

三是逐步加速了各类水处理工艺与传统电絮凝技术的紧密结合,为各类型废水的实际处理提供了更多选择性。

因此,综合强化电絮凝技术当前的研究进展和发展趋势,该领域未来发展可在以下三个方面进行研究探索。

(1)深入研究强化电絮凝的机理。尽管目前对强化电絮凝的机理研究已经起步,但还有许多方面需要更深入的研究。需要对电化学过程中的电絮凝过程、电气浮过程和电解氧化还原过程之间的关系以及相互作用进行研究,对这几个过程进行优化集成,更充分地发挥电絮凝的综合作用。

(2)构建强化电絮凝的新型电极和反应器结构。强化电絮凝技术的核心为新型电极的设计研发,包括阳极的外在构型、电化学特性和阴极的材料组成、表面优化,从而强化系统内电子传递过程,以起到对污染物的更高效去除的目的。同时,需要进行与电极和集成工艺相匹配的新型反应器构型研究,达到三者的相互统一,发挥出电极、反应器和集成工艺的多重优势。将模型模拟应用到电极和反应器的设计当中,更加完善电絮凝体系的电场、流场和传质研究。

(3)完善强化电絮凝的系统性。目前强化电絮凝研究普遍还处于实验室阶段,规模小,且用水大多为合成废水,距离工程应用还有很长路要走。在未来的一段时间内,研究者们需要更多着眼于反应器规模的放大,并考虑对实际废水的处理效率,更要兼顾经济问题,保证电絮凝技术的早日更大范围应用。

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们