该结构由上端滤料池(集中净化区)与下部泄水管组合而成。滤料池设计采用钢筋混凝土或钢波纹管,池底向泄水管方向找坡;泄水管根据泄水量要求布设单根或多根,采用玻璃钢管、钢波纹管等套接下沉。泄水管壁厚满足抗侧向土压要求,穿越渗透不良土层或湿陷性黄土层时,侧壁不开孔,贯入砂层部分开孔。该结构采用“小深度,同管径;大深度,分段变换管径(上大下小)”的结构力学稳态设计,有利于不同埋深、材质渗井性能互补发挥,减少结构耗材及开挖成本,节省投资。净化与渗排分体式设计也便于后期堵塞、污染后集中维护,降低运维成本。目前已在西咸新区多个海绵型建筑小区推广应用。
2.2.2 填料
填料是雨水渗井设计又一关键,既要满足速渗,又须规避地下水污染。设计时,应根据进水水质、水量、排空时间、包气带深度及地下水保护目标等综合确定填料厚度、类型、粒径组成等参数。
雨水渗井填料厚度(hf)理论最大值为整个井深(即地表至渗井底以上包气带深度,井底贯入渗透土层深度应≥侧壁渗透区高度)。设计时,考虑到相邻场次降雨排空要求,填料厚度应满足式(9):
雨水速渗同时可能引发地下水污染,因此,填料厚度须满足污染净化需要。现行《建筑与小区雨水控制与利用技术规范》规定“井底渗透面距地下水位距离不应小于1.5m”,是基于填料与渗透土层协同净化考虑,未考虑汇水区污染类型及水平。因此应尽量让污染集中于填料区,减少向地下水上方渗透土层迁移(污染修复代价大)。为此,可通过进水目标污染物浓度与地下水水质限值要求,确定渗井水质控制最小填料厚度hf-min。鉴于径流污染特征及填料多样性,建议用以下方式确定hf-min:
采用等温吸附实验确定目标污染物饱和吸附量,通过设计进水流量、使用年限等确定填料对目标污染物吸附能力基准,结合吸附量实测值与基准值估算填料厚度;
搭建不同填料厚度土工模型,通过实际雨水或模拟配水试验确定不同填料厚度径流污染削减效率,推算达到净化目标填料厚度;
搭建固定填料厚度土工模型,用实际雨水或模拟配水试验确定污染削减效率,建立HYDRUS等模型,模拟确定最优厚度。
综上,确定渗井填料厚度hf∈[hf-min,hf-max)。
径流污染削减效果还与填料类型、粒径及渗透速率有关。传统速渗为主的雨水渗井,填料多采用粗粒径、单一组分砾石或建筑骨料。汇水区存在污染、地下水保护严格时,笔者建议采用中粗砂填料或改良填料(基本填料+改良剂)。基本填料宜以中砂(0.35~0.50mm)、粗砂(0.50~2mm)为主,改良剂选用强吸附性材料,根据渗井进水污染特征确定。团队通过分析海绵铁、高炉渣、沸石等改良剂特性,采用混合填料滤柱试验,比较不同进水流量(0.5a、1a、2a 重现期,历时90min,汇流比1∶150)、不同进水污染浓度(见表1)等9种工况下,基本填料与改良剂掺混比例(见表2)、改良剂类型对渗井渗透性能及净污效果的影响。
表2 雨水渗井填料配比(体积比)方案
结果(见图5)表明:
添加海绵铁可显著提高TP、NO-3-N、Zn去除,添加活化沸石可提高NH3-N去除,添加高炉渣可提高NH3-N、Cu去除;
试验条件下,体积比 90%基本填料+5%高炉渣+5%沸石对COD削减效果最好,90%基本填料+10%海绵铁对NO-3-N、TP削减效果最好,90%基本填料+10%沸石或90%基本填料+5%高炉渣+5%沸石对NH3-N、TN削减效果较好,90%基本填料+5%海绵铁+5%高炉渣对Cu、Zn、Cd削减效果最好;
改良剂添加比例由10%增至30%~45%时,反应原料、吸附点位、阳离子交换量增加,但同时提高了混合填料渗透速率,径流污染接触反应时间缩短,综合削减率提升不大且原材料成本增加。
实践中,汇水区径流污染轻(如小区、公园),渗井以速渗为主时,基本填料宜选0.50~2 mm粗砂,改良剂可选粒径较大的火山石、陶粒、高炉渣等以5%~10%体积比掺混;径流污染较重,渗井兼具速渗和净污功能时,宜选0.35~0.5mm中砂做基本填料,同时宜选粒径小、净化能力强的海绵铁、活化沸石、麦饭石等材料以10%~20%体积比掺混,结合填料厚度设计实现系统目标。
2.3 附属设施设计
2.3.1 预处理设施
上述试验为评价不同配比填料净污效能,采用了较高配水浓度(较长雨前干燥期才出现的负荷)。实践中,径流污染较重时,不宜由渗井承担全部污染削减,而是通过前端预处理设施控制进水水质,降低填料堵塞污染频率及运维成本。
雨水渗井预处理工艺可分为灰色和绿色两类。城市径流可生化性差,一般不适合生化法处理。传统灰色工艺主要采取拦污沉淀、弃流、过滤等单一或组合方式,根据进水水量水质、处理目的及场地空间确定(见图6)。拦污一般采用格栅、截污挂篮等设施,拦截树叶、垃圾,沉淀泥沙。弃流主要采用容积法、水流切换法等对存在初期冲刷、污染负荷较高的早期径流予以弃除,常用雨落管弃流、液位式/雨量式自控弃流设施,弃流量根据汇水面实测COD、SS等污染物浓度确定,无资料时,屋面、地面分别采用2~3 mm、3~5 mm厚度弃流。成品弃流设施规格、构造及自控等技术参数根据处理量、维护要求与厂家共同确认。经拦污、弃流处理后,可结合雨水回用设置过滤设施进一步降低污染负荷,常见有精密滤网过滤或简易介质过滤。在此,需特别强调的是雨水渗井本身也是处理设施,应权衡其建设使用与预处理设施投入关系,不宜照搬传统混凝沉淀、滤池过滤、膜滤等工艺,增加建设运维成本同时,也因过度处理失去渗井建设意义。实践中,应结合汇水区污染特征、填料净化能力、出水水质及地下水环境容量,设定渗井进水水质控制目标,由预处理设施分担汇水区与渗井进水端污染负荷差值,以此确定预处理工艺及设施规模。
设计时,根据渗井汇水区下垫面性质、竖向,结合子汇水区划分,合理布置绿色雨水设施,综合测算绿色雨水设施系统对汇水区径流污染削减程度。根据渗井进水水质控制目标,结合汇水区基底径流污染特征,优化确定绿色雨水预处理设施规模。
实践中也可采取初期弃流/沉淀+生物滞留等灰-绿设施结合方式实现系统预处理目标。须强调的是,预处理并非万能,医院、垃圾场站等传染性疾病、严重化学污染场所不得设置雨水渗井。
2.3.2 其他附属设施
除预处理设施外,雨水渗井附属设施还包括溢流口/管/通道、爬梯、检修孔、防坠落装置、警示标志等。
①过程控制渗井(削峰调节)应设溢流通道与下游管网衔接;源头减排与终端消纳渗井按需设置溢流口。溢流口/管/通道过流能力不应低于设计最大进水流量;溢流标高应根据渗井调节容积、下游管网/河道水位标高等确定,溢流口/管处应设置滤网以防堵塞。
②渗井顶部蓄水深度>1m时,应设置踏步或爬梯(可参考97S501、02S515、14S501等国家标准图集设计),以便检修养护;有顶盖的渗井应设检修孔(可参考05S804国家标准图集设计)。
③为防止非工作人员或动物坠入,大深度渗井周边应设置防护网、井口防坠网及警示标志。
3 系统施工
Rainwater seepage well
粗犷施工是导致雨水渗井功能低下重要因素。雨水渗井施工时,应根据渗井结构、材质、埋深、土壤地质等,选用明挖法或沉井法。一般情况下,深度<10m,无不良地质,土层稳定的开阔场地,可采用明挖法;大深度渗井宜用沉井法。砖砌渗井、塑料渗井、钢筋混凝土渗井等可采用明挖法,预制钢筋混凝土、玻璃钢管、钢波纹管等成品井可采用沉井法(参照《沉井与气压沉箱施工规范》(GB/T 51130)。
总结传统雨水渗井施工中质量通病和易忽视细节,强调:
(1)土方开挖与地基处理:应根据土质、地下水位、井室断面、荷载条件等制定基坑支护方案;机械开挖不得扰动井底原状地基土,预留200~300mm土层由人工开挖至设计高程整平;验槽时,应采用双环法或单环法复测土基渗透系数;根据设计设置中粗砂或碎石垫层,严禁使用灰土等不透水垫层;开挖时,井边预留填充渗透层位置。
(2)主井施工:
①砖砌式渗井:应符合《砌体工程施工质量验收规范》(GB 50203)规定;辐射管与主井同步施工且随砌随安装;辐射管两侧砾石层对称铺设,避免管道产生位移;井室四周应分层对称回填,每层≤300mm,采用人工回填、夯实,严禁使用机械推土滚压。
②钢筋混凝土渗井:应符合《混凝土结构工程施工质量验收规范》(GB 50204)规定;现浇结构应分层浇圈、连续浇筑,养护后分层回填;预制结构安装前做好构件复验与裂缝鉴定。
③成品渗井(钢波纹管、玻璃钢、塑料):运输吊装中避免碰撞损坏;回填时沿井体分4~6个位置对称回填,避免侧压不均造成井壁变形,实时观测井体、接管变形。
④其他:随时用经纬仪、钢尺等观测校正渗井垂直度,控制偏斜量;注意保护基底渗透层,避免堵塞污染;严密监测周围建构筑物及管线沉降、变形,采取保护措施;进、出水管等附件安装完成后须校准位置偏差。
(3)功能验收:施工完毕后,应饱和注水观测渗井进出水及整体下渗情况(满足设计要求或大于地勘注水试验均值),不得缺失。
4 结语与展望
Rainwater seepage well
雨水渗井作为我国海绵城市技术体系代表性措施之一,是一项涉及多专业协同的系统工程。针对各地实践生搬硬套,缺乏研究支撑,建成后运行效率低、生命周期短、地质灾害与污染频发等问题,建设思路应由“单井设计”向“汇水区系统关联设计”转变、“地质适宜性”向“地质、环境长期适应性”转变、“水量速渗”向“灰绿结合,水量水质调控并重”转变,重视建设前汇水区评估与建成后运行效果、沉降变形等观(监)测跟踪。加强水专业与岩土、结构、材料等专业对话,关注不同水文地质条件下雨水渗井结构设计适宜性研究、渗井工艺参数基础试验与经济高效抗衰减填料研发、雨水集中入渗回灌对地下水涵养及水环境、地质环境等长期影响模拟预测与风险评估等研究方向,持续改进雨水渗井设计、施工与维护方法。为科学推广海绵城市雨洪控制与资源化理念夯实技术保障。