2.2.2 原因分析
从谐振发生时出现的现象以及事后对设备进行检查试验可以得出结论:是产生电感-电容效应过电压导致上述现象发生,而最后6 kV备用B段TV的V相烧坏则是在谐振时该相的激磁电流较大,已将匝间绝缘损坏,当更换熔断器投运时,短路电流将其烧坏。是什么原因引发的呢?
事发前几天空气相对湿度一直高达95%左右,设备绝缘水平明显下降。运行中2号送风机真空开关W相阻容吸收器对地发生持续闪络,直到高阻接地,使系统L3相对地总电容和该相TV电感并联后等效成容性负载。而L1,L2两相由于电压升高,TV激磁电流在过相电压后增加迅速,因而等效成感性负载。由于正常运行时TV感抗远大于系统对地容抗,因而当电压变化使L1,L2两相等值感抗降至和L3相容抗接近时,系统便发生了谐振。谐振时由于电容电压较电感电压升高更快,因而L3相又等效成感性负载,从而破坏了谐振维持的条件,所以又称这种谐振为电感-电容效应。发生电感-电容效应使三相TV同时饱和,激磁电流超过TV一次熔断器额定电流,使熔断器同时熔断;L3相对地闪络高阻接地时母线电压降低,低电压保护动作切断6 kVⅡB段所有负荷。具体计算如下:
a)TV激磁感抗计算
事后对6 k VⅠB段TV进行激磁特性试验的数据 计算出TV相电压和线电压下激磁感抗
b)计算6 k V工作及备用B段对地电容仿上,算出ⅠB段设备每相对地总电容C2=0.996μF,ⅡB段每相设备对地总电容C4=0.811μF,备用B段电缆及高压厂用备用电源变压器低压侧B分支电缆每相对地电容CB=1.128μF,最后求得每相对地总电容
c)谐振频率估算谐振等值电路,其中:
根据H.A.Peterson理论,本次XC/XL=3.26/50=0.065,落在第一区内,即产生了1/2次电源频率谐振。这也和通常理论相吻合。
可知:当电源电动势和阻抗参数落在某一曲线范围内时,就将产生相应频率的谐振现象,在两条曲线的边界区域,两种谐振现象都有可能发生,或者从一种状态过渡到另一种状态;由于分频谐振所要求的电源电压最低,因而最容易发生;一般只发生基波或分频谐振。
3 采取措施
3.1 一般措施
在中性点不接地系统中,一般限制铁磁谐振过电压措施可分为两大类。
第一类是:改变电容、电感参数,使其远离谐振匹配条件,如对实例一的分析,除去输煤Ⅰ段后,谐振点落在H.A.Peterson谐振曲线B点,这样发生谐振条件相对减少;每相母线上安装电容器,使容抗始终大于感抗不满足谐振产生条件;采用激磁特性好的TV,并使TV组中3台TV激磁特性相近,限制同一系统中TV并联台数;或选用容性TV(如在220 kV及以上系统中用电容式电压互感器);在TV高压侧中性点串接单相TV或系统中性点经消弧线圈接地等。
第二类是:消耗谐振能量,阻尼抑制或消除谐振发生。如在TV高压侧中性点串接电阻器;在开口三角侧接入非线性电阻器等。
3.2 具体措施
a)考虑使阻抗参数尽量避开谐振区,对发生谐振较频繁的6 k V厂用电,应考虑将6 kV电源变压器中性点改为经消弧线圈接地。
b)在多台并联运行TV中性点加装阻尼线阻R0,只要满足R0≥6%XL即可消除谐振。在加装中性点电阻时还应考虑电阻功率及表面爬电距离。对于JDXJ-6型TV可选用10 kΩ,100 W,150~200 mm电阻器;或在开三角处经刀闸并联一个0.2~0.3Ω大功率电阻器,正常时刀闸处于分开位置,当发生谐振时瞬间合上,过2~3 s则拉开刀闸。由于电阻消耗掉能量,从而谐振立即消失,这样可限制基波和分频谐振。或采用武汉大学陈维贤教授研制的整流型分频消谐装置。
c)由于中性点电阻对厂用电空母线合闸阻尼效果不好,还应在TV开口三角侧加装用于限制高次谐波谐振装置,通常可选用150~200 W功率白炽灯串接在开口三角侧。
d)维护好厂用电其它负荷,避免发生对地闪络或接地等事故引起的谐振过电压。
e)要按H.A.Peterson理论认真核算不同运行方式下每相对地容抗和感抗比。就实例二的南方某电厂来说,我们经过核算,发现几种运行方式下每相对地容抗和感抗比均落在0.01~0.08之间,故均有可能产生分频谐振。对此,可采取增大电容量或选用激磁物特性好的电压互感大器,使之比值小于0.01。
参考文献
[1]解广润.过电压及保护[M].北京:电力工业出版社,1980.
[2]陈维贤.电网过电压教程[M].北京:电力工业出版社,1996.