3.3溅渣层的浸蚀特性
为了研究溅渣层的抗浸蚀性能,在试验室内测定了两种合成渣在初渣和终渣条件下的浸蚀速度。
试验结果证明:
(1)溅渣层对转炉初期渣有较强的抗浸蚀能力,能够起到保护炉衬的作用。
(2)溅渣层对高温终渣的抗浸蚀能力很差。进一步提高溅渣层的熔点是提高溅渣层抗浸蚀能力的关键。同时,在生产实践中坚持一炉一溅和低温出钢,将有利于提高溅渣护炉的效果。
4适宜溅渣护炉的终渣成分控制
试验证明,高温熔化将造成溅渣层的严重浸蚀。因此,改变炉渣成分,进一步提高炉渣的熔化性温度,有利于溅渣护炉。
在一定的碱度条件下,提高渣中TFe含量将使炉渣熔化性温度明显降低。而碱度变化对炉渣熔化性温度影响不大。在正常炼钢条件下,控制渣中TFe=15%~20%,炉渣熔化性温度波动在1720~1780℃之间。
在渣中TFe=20%的前提下,改变渣中MgO含量和炉渣碱度,可以调整炉渣的熔化性温度。
(1)当渣中MgO含量小于8%时,对同一碱度,随MgO含量的增加,炉渣熔化性温度降低。在此范围内,增加MgO含量有利于熔池化渣,不利于溅渣护炉。当渣中MgO含量大于8%以后,对于确定的碱度,增加MgO含量有利于提高炉渣的熔化性温度。
(2)当MgO含量小于8%时,对同一MgO含量,提高炉渣碱度,将降低炉渣熔化性温度;当M束。含量大于8%以后,对同一MgO含量,提高炉渣碱度,会提高炉渣熔化性温度。
(3)对于正常炉渣碱度范围(R=2.1~3.8),控制炉渣MgO含量为8%~10%,将使炉渣熔化性温度降低至最低点(l700~1725℃),不利于溅渣护炉。
(4)从溅渣护炉的观点出发,最佳的炉渣成分控制为:
低碱度、低MgO含量区域(R=2.l~2.4;MgO≤4%、TFe=20%)
高碱度、低MgO含量区域(R=3.0~3.8;Mg0≥l2%、TFe=20%)
该区域内,炉渣的熔化性温度可达到1800~1870℃。
5结语
从水模试验、炉渣岩相检验、试验室高温模拟溅渣及理论计算几方面进行了溅渣工艺动力学、炉渣改质、粘结机理、溅渣层的损蚀机理及适宜溅渣的终渣成分等方面的研究工作,取得了初步的结果,有些尚不能得出确切的结论。由于篇幅所限不能详细论述,其中部分工作今后还将深入进行,以期得出更为符合实际得结论。