才开始在北京市的燃气管道上使用,且价格偏高,但随着塑化沥青防蚀带的大面积推广使用,其价格会适当降低,而且其施工受环境温度影响较小,己成为常用防腐方式的一种。无机富锌+环氧煤沥青是随着华北油田进京天然气复线工程进入燃气工程应用领域的。主要用于1.0MPa高压管线。原因是当时燃气管道的阴极保护得到重视,但实施管道阴极保护需要设置一定数量的检测桩,而在城区交通干道上设置检测桩(地上或地下)有一定的难度,并且,基于当时工程技术人员阴极保护理论水平的限制,工程工期又紧,所以采用无机富锌底漆做为管道双重保护的一种措施。而且,在当时条件下,对采用牺牲阳极或外加电流的阴极保护方案,从运行管理方面能否得到预期保护效果的疑虑,也是采用无机富锌底漆的原因之一。实际上,采用无机富锌做为金属的防蚀保护措施是有其适用环境、条件和局限性的,对于埋地管道的长效保护,尤其是做为双重保护措施,采用无机富锌并非为一种好的选择。单层熔结环氧粉末喷涂防腐技术是目前国际上公认的高效防腐方式之一。该技术九十年代初在北京液化石油气三油线上首次使用(埋地和架空),从多年运行情况看效果良好。该防腐方式采用机械化、半自动化流水线作业,原料及作业工艺易于控制,有一套完整的管道附件和补口、补伤工艺方案和一套完整的质量保障体系,性能指标远优于其他常用方式,尤其采用双重保护时更显其优越性,而且价格适中。通过慎重分析,并与常规外防腐方式进行对比和研讨,我们决定在本超高压、大口径天然气干线工程设计中使用这种机械化、工厂化、高质量、高速度、中等成本的防腐技术,同时为保证粉末涂层的喷涂质量,环氧粉末指定采用美国3M公司产品。选定了一种好的防腐方式并不就等于选择了好的防腐工程质量。每种防腐涂料都有其优缺点,但它们有一个共同特点,就是对埋地管道给予保护。而它们对管道的保护效果又取决于从选料至管槽回填的各个工序质量。如果在各个阶段均按照标准、规范的要求进行,那么无论哪种外防腐层、哪种阴极保护方案,都会对埋地管道起到应有的保护作用。相反,不论多么优质的涂料,多么先进的防腐手段,花费多高的投入,也不能确保对埋地管道起到应有的保护作用。只有在各个工序质量控制过程中以认真、求实、科学的工作态度,严格执行质量标准,才能确保防腐工程质量。环氧粉末喷涂防腐方式中,涂层质量的三个关键指标就是附着力、厚度和电火花检测。这三个指标也正是我院设计人员在涂层质量跟踪工作中的重点。在粉末质量保证的前提下,涂层的附着力主要取决于钢管表面的除油、除锈及除尘质量和锚纹情况。这与钢管的原始状态,除锈用料的选择和更换频度又有直接关系。环氧粉末用料的多少则直接决定着该防腐方式的经济性。在涂层设计厚度确定的前提下,实际涂层薄,达不到设计要求;实际涂层厚,又造成不必要的浪费。[!--empirenews.page--]例如,在管材防腐过程中,曾因环氧粉末货运周期与工程周期冲突,指定的美国3M环氧粉末一时断货,为确保工程进度,防腐厂经设计单位及甲方同意临时调换了另外一个厂家的环氧粉末。在工程质量巡查过程中,我们加大了对更换环氧粉末的管材防腐涂层的检查力度,及时发现了涂层的附着力问题。经过分析讨论,认为关键问题之一就是钢管表面涂有防锈底漆,该问题起初并未引起防腐厂足够的重视,除油效果不好,同时抛丸除锈用钢砂又造成连锁负效应,使不带底漆的钢管造成污染。由此引起几十根防腐好的钢管重新返工。加强钢管除油工作,又彻底更换了钢砂之后,附着力问题得到彻底解决。该问题的及时纠正,虽然造成几十根钢管重新防腐,但却减少了工程事故隐患,确保了防腐涂层的质量。再如,由于管材为螺旋缝管,螺旋焊缝根部在抛丸除锈时就不容易达到质量要求,进而影响防腐涂层质量。我院设计人员在防腐厂发现该问题后,及时反馈给工厂技术人员,改进了钢砂的选料和配比后,不但圆满解决了螺旋焊缝根部的除锈问题,而且,新选钢砂由于使用寿命增加,同时也降低了除锈成本。 还有,如防腐涂层火花检测标准问题,为了严格监督粉末质量、喷涂工艺质量、喷涂厚度以及施工过程中人为因素产生的破损问题,在质量保证、规范允许的范围内,通过实践、总结、再实践、再总结,提出了正常管段5000V、现场补口10000V的火花检测标准,并在后续同类工程使用至今。②带状镁阳极的应用本工程首次在城镇天然气管道电保护系统设计中引入了带状镁阳极。由于本工程的重要性,在工程设计的各个环节,都要精心细致。过去,在顶管穿跨越工程中,由于套管的屏蔽作用,套管内的管段除了工艺上采用加厚管壁、提高防腐等级等措施外,在电保护系统设计上并无更好的措施。另外,在牺牲阳极阴极保护系统中,阳极的埋设位置及深度有一定的要求,同时,阳极周围也应有一个较好的导电环境。在本工程的穿山段,管道是敷设在采用爆破方式炸出的石头管槽中的,如果仍旧采用块状牺牲阳极阴极保护方式,开挖阳极坑将非常困难,而且由于石头地质的导电环境较差,管道的阴极保护效果也不会十分理想。为了解决上述两个问题,我们查阅了大量的工程技术资料,拜访了多位学术界和工程应用领域的防腐专家及工程技术人员,并进行了多次技术调研和研讨,最终选择了带状镁阳极,并在一些专家的帮助下,进行了敷设方式和用量的选择、计算和设计。从而解决了套管内和恶劣工程地质环境中燃气管道的阴极保护问题。该工程竣工后的测试资料表明,采用带状镁阳极完全达到了设计初衷,也为同类工程提供了切实可行的参考方案。③直埋绝缘接头的选取和布置绝缘是埋地管道电保护系统中一项常规且重要的技术。没有绝缘,就没有电保护。过去,阴极保护的电绝缘一般是采用绝缘法兰。而绝缘法兰在绝缘性能、日常维护等方面有许多局限性,而且需要砌筑专用维护井。我们通过对国内外绝缘装置的性能、价格、施工和运行管理等方面的分析和比较,认为直埋绝缘接头绝缘可靠性高、密封性能好、设计有防爆、防雷击的放电火花间隙、施工简单、各种性能均优于绝缘法兰,而且综合费用低,性能价格比高。因此,我们在国内城镇燃气系统首次确定和选用了德国大口径、超高压、整体直埋绝缘接头专利产品,代替常规采用的安装于地下小室内的绝缘法兰,既提高了天然气管道的电保护效果,又减少了占地,方便了管道电[!--empirenews.page--]上一页[1][2][3][4][5]下一页 保护系统的运行管理。自此开始,北京市燃气系统大量采用直埋绝缘接头。电保护系统设计中,绝缘装置一般布置在管线的起、终点及分支口处。本高压管线工程中,电保护系统的设计根据管道沿线的土壤腐蚀性调研和地质情况,将管道沿线土壤腐蚀环境分为几个典型地段,在干线上增设了多个分段绝缘接头,把穿山及长距离与河流伴行等特殊地段的管段与其他管段实行电绝缘,以防止不同土壤腐蚀环境相互影响和由于工程地质不同造成的宏观电池腐蚀。(4)焊接与检验过去,城镇燃气输配系统的设计压力最高为0.8Mpa,钢管管材大多选用碳素钢,钢管壁厚也是按照惯用壁厚系列选取,其强度远高于管道强度计算结果。焊接工艺属于常规工艺,焊缝的检验要求也比较低,抽检比例不低于5%(城镇燃气输配工程施工及验收规范CJJ33-89中规定,当设计文件无规定时,抽检数量应不少于焊缝总数的15%)、质量不低于Ⅲ级即可,除非设计文件另有特殊要求。随着城镇燃气输配系统设计压力的提高,管材的选用已经发生了较大的变化,开始采用高强低合金钢,焊接材料的选用也因管材的改变而改变,燃气管网系统的安全性要求也更加突出,过去的老一套做法已不再适用。针对超高压天然气管道的焊接要求,《输气管道工程设计规范》明确规定,除设计文件应标明管道和管道附件母材及焊接材料的规格、焊缝和焊接接头型式,提出焊接方法、焊前预热、焊后热处理及焊接检验等明确要求外,对施工单位也应提出具体要求。施工单位在工程开工前应根据设计文件的要求,进行焊接工艺试验,并根据焊接工艺试验结果编制焊接工艺说明书。针对城镇燃气输配系统中的管道,应按四级地区考虑,焊缝无损探伤检验数量和质量等级为:用射线照像检验时,应对每个焊工当天完成的全部焊缝中任意选取不少于75%的焊缝进行全周长检验。对于管道壁厚大于或等于8mm的焊件,也可先用超声波探伤仪对所有焊缝进行全周长100%检验,然后再用射线照像对所选取的焊缝全周长进行复验,其复验数量为每个焊工当天完成的全部焊缝中任意选取不少于20%的焊缝。管道穿越水域、公路、铁路的管道焊缝以及未经试压的管道碰口焊缝,均应进行100%的射线照像检验。用超声波探伤检验的焊缝,其质量的验收标准应按现行国家标准《钢焊缝手工超声波探伤方法和探伤结果分级》执行,I级为合格。用射线照像检验的焊缝,其质量的验收标准应按现行国家标准《钢熔化焊对接接头射线照像和质量分级》执行,Ⅱ级为合格。设计文件中采用射线照像检验还是超声波探伤加射线照像复验则要取决于管道壁厚、工期以及两种检验方式的质量和速度。陕京市内工程由于施工周期要求紧迫,而采用X射线照像时需要的时间长,因此我们采用了100%超声波探伤,加任意抽取全部焊缝的20%进行复验的方式。对管线穿越铁路、河流、大砂坑及重要交通干道等特殊地段的管道焊缝以及未经试压的管道碰口焊缝则采用100%的射线照像检验,而且对未经试压的管道碰口焊缝要求工级为合格。[!--empirenews.page--]近一年来,随着Y射线源照像装置的引进,射线照像检验所需的时间减短,其检验结果的可信度又高于现场定级的超声波探伤方式,工程又开始采用纯射线照像检验方式。(5) 压力试验管道的压力试验包括强度试验和严密性试验。《城镇燃气输配工程施工及验收规范))CJJ33-89(适用压力不大于0.8MPa)中规定,燃气管道的压力试验介质宜采用压缩空气。燃气管道的强度试验压力应为设计压力的1.5倍,严密性试验的试验压力应为设计压力的1.15倍。《输气管道工程设计规范))GB50251-94则根据地区分级,规定四级地区管道的强度试验应采用水作为试验介质,试验压力不应小于设计压力的1.5倍;严密性试验用气体作为试验介质时,其试验压力应为设计压力。《工业金属管道工程施工及验收规范》GB50235-97对压力试验的规定则为:压力试验应以液体为试验介,当管道的设计压力小于或等于0.6MPa时,也可采用气体为试验介质,但应采取有效的安全措施。当管道的设计压力大于0.6MPa时,必须有设计文件规定或经建设单位同意,方可用气体进行压力试验。气压试验的试验压力应为设计压力的1.15倍。输送可燃流体的管道必须进行泄露性试验,泄露。性试验的试验介质宜采用空气,泄露性试验压力应为设计压力。从以上几个正在执行中的国标、行标的规定中可以看出,由于编制时间不同,应用的范围不同,对燃气管道压力试验的要求也不尽相同。针对城镇燃气管道系统的压力试验,尤其是超高压天然气管道的压力试验,则应在执行国家标准、行业标准的同时,必须认真考虑压力试验的安全性、试验介质的来源与排放、试验介质对燃气输配系统的影响等因素。城市天然气供应绝大多数输送的是干天然气,燃气输配系统也是按照干天然气进行设计的。由于城市道路下市政管道多,管网综合以有压让无压为原则,燃气管道的纵断布置比较复杂。若采用水作为压力试验介质,压力试验完成后,如何彻底地将水排除必然成为一个新的问题。如果水排除不干净,势必会对今后燃气输配系统的运行带来麻烦。因此,在北京市引进陕甘宁天然气市内工程中,在征求建设单位同意、并且建设单位进行具体操作试验的基础上,我们在设计文件中规定,强度试验采用空气或惰性气体为试验介质,但必须采取有效的安全措施,并应报请主管部门批准。气压试验的试验压力应为设计压力的1.15倍。严密性试验用空气作为试验介质,其试验压力应为设计压力。4 结束语对于城镇超高压天然气管道的设计,由于工程设计的全新性,许多技术方案和措施有待实践检验,有些技术问题需要在实践中摸索、总结和提高,既要坚持设计质量的要求,又要满足施工的需要,同时还要考虑节省工程投资。为此,我院设计人员把工程设计工作延续到了从钢管在防腐厂防腐到施工现场管沟回填的全部过程,实施24小时的配合和服务,质量第一,服务第一。除前面所述的一些例子外,还有大量的实例。比如我们在跟踪钢管防腐质量时发现了个别管材表面的质量问题,在跟踪弯管防腐质量时发现了弯管加工中存在的质量问题,又如在施工现场发现极个别管子防腐涂层厚度不匀问题,在电保护工程的质量跟踪过程中我们发现,由于对管道实施阴极保护而对管道防腐涂层的破坏没有得到较好的恢复,还有在运输和管沟回填过程中施工人员不注意管道防腐层的保护问题等。所有这些问题,都需[!--empirenews.page--]上一页[1][2]&nb sp;[3][4][5]下一页 要设计人员以高度的责任心、质量意识和主人翁精神去跟踪、反馈和解决。也只有这样,才能使“以控制管道自身的安全性为原则”的原则落到实处,才能确实保证工程的设计质量和工程质量。北京市引进陕甘宁天然气市内工程高压管线工程97年已陆续经竣工投运,参加验收的各方都对本工程的质量表示满意和放心,这当然离不开各施工队伍的辛勤劳动,离不开各单位、各部门之间的团结、协作,我们认为,这其中必然也包含着我院设计人员的精心设计、全程服务、质量意识、创优意识、节约和创新精神。 通过几年来城镇超高压天然气管线工程的设计实践,我们积累了一定的设计经验,也锻炼和培养了一支敢打敢拼、技术过硬的设计队伍,但毕竟城镇超高压天然气工程的设计工作刚刚起步,有许多课题需要去深入研究和解决。比如城镇超高压天然气管道的水力计算问题、应力计算问题、压力试验过程中管道的加固问题、管线通过不良工程地质地段的稳管防护措施问题等。在工程配合和质量跟踪过程中,还会有一些新的问题出现。但是我们相信,解决超高压天然气工程的质量问题和安全性问题,只要能够参照和执行“以控制管道自身的安全性为原则”的原则,许多棘手的工程实际问题将迎刃而解。