安全管理网

污水处理过程N2O排放:过程机制与控制策略

作者:杨振理、郝晓地等  
评论: 更新日期:2024年08月30日

编者按:

污水处理生物脱氮过程中氧化亚氮(N2O)作为直接碳排放源,其大气升温效应较CO2高出265倍。N2O产生源于硝化与反硝化过程,主要涉及亚硝化(AOB)及其同步反硝化、常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化学途径。常规硝化与反硝化(AOB+HDN)途径在正常运行工况下N2O排放量并不是很大,约只占进水TN负荷的1.3%;即使是HN-AD与COMAMMOX代谢过程,两者N2O产生量也不足TN负荷的0.5%。不可忽视的是AOB亚硝化及其同步反硝化,它们已被确认为是污水处理生物脱氮过程中N2O排放的首要途径;AOB过程中间产物(NH2OH与NOH)非生物化学过程以及AOB反硝化生物过程(主途径)共同导致的N2O排放量可高达TN负荷的13.3%,主要是因为硝化过程溶解氧(DO)受限引起NO2-积累所诱发的AOB反硝化过程。污水处理生物脱氮过程中为防止N2O产生,应着力促进HDN反硝化进行完全和避免AOB反硝化过程。为此,运行过程中应控制曝气池中DO处于正常水平(~2 mg·L-1),并尽可能延长污泥龄(SRT→20 d),以避免AOB亚硝化积累NO2-并诱发AOB反硝化出现;同时,应及时补充进水碳源,以促进HDN反硝化进行完全至终点——N2。本论文综述分析了生物脱氮过程中涉及N2O产生的所有机制,并根据过程机理讨论了对其运行控制的策略。文章将于2023年2月第2期《环境科学》上发表。

文章亮点

1 污水处理脱氮过程N2O产生的主要途径为:硝化与反硝化、AOB同步亚硝化与反硝化和全程氨氧化(COMAMMOX)途径;其中,AOB亚硝化及其同步反硝化为污水处理生物脱氮过程中N2O排放的首要途径。

2 绘制出各种N2O产生的途径的路线图并总结了相应的产率系数。

3 基于生物脱氮过程中涉及N2O产生的所有机制,提出相应的运行控制策略。

01 污水脱氮过程中N2O产生途径与机制

好氧硝化(AOB和NOB)与常规异养反硝化(HDN)、同步异养硝化-好氧反硝化(HN-AD)和全程氨氧化(COMAMMOX)代谢过程产生N2O机制均已被探明,是基于它们的硝化/短程硝化与反硝化途径。因此,可以将目前已经明晰、且作用明显的污水处理脱氮过程涉及N2O产生的主要生物过程和次要非生物过程汇总于图1,并对各个过程转化路径机制以及N2O产生贡献率进行分析和讨论。

图1 污水处理脱氮过程N2O产生途径(来自原文)

1.1 硝化与反硝化途径

1.1.1 硝化途径

1)AOB短程硝化

AOB将NH4+氧化为NO2-的生物过程中主要经过羟胺/NH2OH(由氨单加氧酶/AMO催化)与次要途径硝酰基/NOH(由羟胺氧化还原酶/HAO催化)两个中间产物,如图1(a)所示。NH2OH或NOH可经生物途径①或非生物化学途径②转化至N2O。

①在生物途径中[图1(a)中红色线条],存在由NH2OH直接转化为N2O的两个生物过程。一个是在无氧条件下,cyt P460(HAO的c型血红素)将NH2OH直接氧化为N2O,但此过程在好氧情况下显然不能发生。另一个是NH2OH向NO过渡的生物氧化过程(由HAO催化),也是N2O潜在来源;在这一NH2OH生物氧化过程中,AOB能释放两个细胞色素c分子,参与AOB电子传递,其中,细胞色素之一的c554分子可以作为一种NO还原酶/Nor,把由HAO催化产生的NO于菌体外还原为N2O。大多数AOB中都能检测到Nor基因组。此外,经NH2OH生物氧化产生的NO也能逆向转化为NO2-(由未知酶/NcyA催化)。

②在非生物化学途径下[图1(a)中黑色虚线条],从NH2OH和NOH化学转化N2O分别是NH2OH化学氧化或歧化以及NOH在好氧条件下二次聚合生成次亚硝酸/N2O2H2后再发生水解反应产生N2O。

2)HN-AD与COMAMMOX硝化

HN-AD菌氧化NH4+、NH2OH或有机氮化合物时并不从该过程中获得能量,而是利用有机碳源和有氧呼吸来产生能量。HN-AD菌能进行完全硝化,将NH4+逐步转化为NO3-,但分别需要AMO、HAO和硝酸盐氧化还原酶/Nxr等酶加以辅助[图1(b)]。

COMAMMOX是硝化螺旋体菌属的一个从属菌属,能将NH4+逐步氧化至NO3-,进行完全NH4+氧化(一步到位)。COMAMMOX携带AOB与NOB同源基因组,能同步进行AOB的NH4+氧化与NOB的NO2-氧化。COMAMMOX在AMO酶催化作用下,先将NH4+氧化为NH2OH,之后NH2OH依次被氧化为NOH和NO2-,该过程由HAO酶催化完成,最终NO2-在Nxr酶催化作用下,转化为NO3-[图1(c)]。迄今为止,所报道的COMAMMOX基因组中缺乏编码Nor基因及细胞色素c蛋白,无法将由硝酸盐还原酶/Nar和亚硝酸盐还原酶/Nir生物还原而成的NO转化为N2O。

1.1.2 反硝化途径

1)HDN与HN-AD反硝化

HDN是以有机物(COD)作为电子供体,在不同氮氧化物还原酶催化作用下将NO3-依次还原为N2的过程,如图1(a)中紫色线条所示。参与催化HDN反硝化过程的酶包括Nar、Nir、Nor和N2O还原酶/Nos。Nos最大还原速率大约是Nar或Nir还原速率的4倍,这表明在缺氧或厌氧条件下,N2O可以被彻底还原,并不会发生N2O积累。但在污水生物脱氮实际运行过程中一些因素会抑制Nos活性,如,缺氧环境中存在DO、低pH、高NO2-浓度和C/N等因素,导致N2O在反硝化过程中发生暂时性积累。HDN中除了反硝化脱氮菌能产生N2O外,反硝化除磷(DPAO)菌,亦能产生N2O。DPAO过程中所利用的细胞贮存物质PHA和NO2-积累是缺氧条件下DPAO过程产生N2O之关键因素。最新研究发现,ANAMMOX过程会产生N2O,但颗粒污泥内部HDN反硝化作用最终被认定为ANAMMOX反应器(即,颗粒污泥)排放N2O的根本原因。

HN-AD菌亦能同步摄取O2和NO3-,在Nar、Nir、Nor和Nos等酶催化作用下,进行好氧反硝化,将NO3-逐步还原为N2或N2O [图1(b)]。

1.2 AOB同步亚硝化与反硝化途径

AOB除了亚硝化途径外,亦可通过反硝化途径产生N2O。有研究指出,硝化过程中AOB反硝化作用也是活性污泥系统产生N2O不可忽视的途径,且被认为是污水处理系统产生N2O的主要来源。AOB可以在低DO或高NO2-浓度情况下,将NO2-逐步还原为N2O,这个过程被称为AOB反硝化作用。低DO浓度会对NOB产生明显抑制作用,使NO2-进一步氧化受阻,造成NO2-积累;此时,AOB会分泌一系列Nir、异构亚硝酸盐还原酶/Ntr和Nor等酶,而Nor酶在有氧条件下不会受到抑制,且AOB基因组中没有发现编码Nos的基因,所以,AOB反硝化终产物不是N2而是N2O[图1(d)]。AOB在Ntr酶催化作用下可直接[图1(d)中左侧水平粗红色线条]将NO2-还原形成N2O,亦可在反硝化过程[图1(d)中右侧水平粗红色线条]经NO而形成N2O。这两个生物途径构成了AOB产生N2O的主要过程,且此两途径在DO<1.5 mg·L-1便可以发生,至DO<0.2 mg·L-1时作用最为明显。

1.3 非生物化学路径

除生物主要途径外,非生物次要化学途径亦可产生少量N2O;NH2OH、NOH和HNO2等是在污水或自然水体中化学产生N2O的主要前体物质。NH2OH除能通过自身歧化反应产生N2O外,亦可与O2和HNO2反应产生N2O。此外,在相关环境条件下,氧化还原活性金属(铁和锰)、有机物(腐殖酸和黄腐酸)和氮循环中间体之间的化学反应也可能产生N2O。

污水处理脱氮过程中N2O排放主要源于AOB同步亚硝化与反硝化途径,该途径中AOB反硝化与其亚硝化过程产生的非生物化学途径合在一起可使N2O产生量达TN负荷的13.3%。其次,硝化与反硝化途径经AOB亚硝化过程中间产物NH2OH与NOH非生物化学途径和HDN反硝化不完全所产生的N2O量并不高,占TN负荷的1.3%~3.5%。此外,硝化与反硝化途径中HN-AD与COMAMMOX纯菌株培养过程中N2O产量分别为TN负荷的5.6%与0.05%~0.5%。污水处理脱氮过程中各种生物途径及其中间产物非生物化学途径N2O产率系数总结于表1。

1.jpg

02 污水脱氮过程中N2O减排策略

2.1 硝化与反硝化途径

2.1.1 常规硝化与反硝化

硝化(AOB+NOB)与反硝化(HND)途径中AOB生物与非生物途径只产生少量N2O,且NOB硝化过程并不产生N2O,所以,硝化过程只要保持DO≥2 mg·L-1来保证AOB和NOB硝化顺序完成至NO3-,便可在很大程度上避免硝化过程N2O产生。对HDN反硝化而言,关键是要保证能够获得足够的碳源,因为当进水中碳源不足时,HDN反硝化便会受阻,从而导致NO3-反硝化不完全而止步于N2O。但是,进水中碳源缺乏是我国污水非常普遍的情况,这就需要通过外加碳源方式去促进完全反硝化作用;结果一举两得,同时可以避免N2O积累现象发生。此外,运行实践中好氧池DO也不能维持过高水平,只要硝化完全,DO则不必太高,一般控制在2 mg·L-1即可。否则,曝气池过高DO会随内回流进入缺氧池(如,A2/O工艺),从而抑制反硝化,出现N2O积累而溢出现象。

2.1.2 HN-AD好氧硝化与反硝化

HN-AD菌利用有机碳源和有氧呼吸产生能量,进而完成同步异养硝化-好氧反硝化过程。有研究发现,在混合菌株培养实验中HN-AD菌在C/N=10的条件下,异养硝化-好氧反硝化才能有效进行。然而,进水中缺乏碳源是我国污水非常普遍的情况,且部分碳源属于难生物降解物质,可生物降解碳氮(COD/N)比一般<5。这就意味着我国污水处理脱氮过程中,HN-AD途径产生N2O可能性很小。而目前研究证实的一些HN-AD菌只有在DO≥3 mg·L-1时才能发生有效异养硝化-好氧反硝化,这从另一角度再次说明,实际污水处理过程,HN-AD产生N2O的可能微乎其微。

2.1.3 COMAMMOX硝化

COMAMMOX菌的微生物氧化酶通常在极低DO浓度下表达,并对DO有较高的亲和力。COMAMMOX在低DO条件下可以成为硝化过程优势菌属,但随DO浓度增加,AOB活性逐渐增加,COMAMMOX则会失去竞争力。污水处理过程中,DO控制在2 mg·L-1左右,可有效避免COMAMMOX硝化过程产生N2O。

2.2 AOB同步亚硝化与反硝化

工艺运行环境中发生硝化作用的好氧池一般DO均控制为≥2 mg·L-1,少有出现DO过低(<1.5 mg·L-1)的现象,除非曝气设备出现异常。也就是说,AOB反硝化现象只有在运行异常情况下方可能发生,但其产生N2O的作用并不能因此而掉以轻心。当低DO<1.5 mg·L-1时,会导致AOB利用NO2-作为电子受体将其反硝化产生终产物N2O。同时,低DO容易导致NOB被抑制,造成NO2-积累。此外,通过控制系统污泥龄(SRT)有效持留NOB亦可降低N2O排放量。若能控制系统保持长SRT(约为 20 d),则有利于比增长速率较低(0.801 d-1)的NOB生长,可降低系统中NO2-浓度,最终降低系统N2O产量。因此,硝化过程应保持DO在2 mg·L-1左右,控制系统SRT尽可能要长(如,20 d,同步生物除磷时例外),避免因NOB受DO、SRT抑制而积累NO2-,从而导致AOB反硝化发生产生N2O。

2.3 其它控制措施

2.3.1 加入铜元素

传统硝化与反硝化途径HDN反硝化过程的Nos酶是含铜酶,其活性中心具有催化位点CuZ,含有铜离子,因此,加入铜元素则有利于加强Nos酶活性。铜元素是Nos酶进行生物合成的必需物质,并且它的含量能够影响N2O产量。然而,在实际污水处理系统中,铜元素的作用及其对HDN反硝化过程中N2O产量影响尚未见报道。

2.3.2 pH与温度

此外,污水处理过程中,脱氮微生物相关酶活性与pH密切相关,且影响污水中N元素存在形态,从而会影响污水处理厂N2O产量。硝化过程中AOB与NOB代谢过程适宜pH值分别为7.0~8.5和6.5~7.5。因此,当pH>8.5或<6.5时,NOB代谢活性较AOB更易受pH抑制,致NO2-积累,进而导致N2O产生。因此,污水处理过程中,避免pH过高或过低环境可有效降低N2O排放。

温度主要通过化学平衡、酶活性和溶解度来影响N2O产生。首先,温度扰动会导致NH4+和NO2-氧化反应不平衡。其次,温度为25℃时,Nos酶活性可能增强,从而降低N2O积累速率。总之,夏季时污水处理可实现N2O产生最小化。

03 结语

污水处理生物脱氮过程N2O释放于硝化与反硝化过程,主要与AOB及其同步反硝化、HDN、HN-AD和COMAMMOX等生物途径,以及硝化过程中间产物NH2OH与NOH之非生物化学途径有关。常规硝化与反硝化(AOB+HDN)途径在正常运行工况下N2O排放量并不是很大,约只占进水TN负荷的1.3%;即使是HN-AD与COMAMMOX代谢过程,两者N2O产生量也不足TN负荷得0.5%。而AOB亚硝化(非生物途径)及其同步反硝化(生物途径,主途径)过程是污水处理生物脱氮过程中N2O排放的首要途径,N2O排放量可高达TN负荷的13.3%。原因是硝化过程DO受限引起NO2-积累所诱发的AOB反硝化。

为此,污水处理过程中应尽量避免低DO、NO2-积累和碳源不足等现象。运行实践中,可通过以下3种措施控制N2O排放:①好氧池DO应控制在2 mg·L-1左右;②如果不涉及生物除磷,SRT尽可能要延长至≥20 d;③进水碳源不足时应及时补充外加碳源。这些技术措施可有效防范N2O于未然。

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们