世界上有一半的飞机失事是由雷暴天气引起的!
世界航空史上已经有2500多架飞机遭雷击毁!
雷暴是被世界航空界和气象部门公认的严重威胁航空飞行安全的天敌。
通常,雷暴天气会出现在夏季。然而,在今年2月我国民航发生的6起运输航空事故症候中,5起是雷击。冬季连续发生飞机遭雷击的事故症候在我国十分罕见,全球气温反常固然是引起这些雷击事件的重要原因,但专家认为如果机组本身对天气有一定的了解,又具有很强的雷击风险防范意识,那么飞机在空中遭到雷击的几率也会大大降低。
CB是什么
谈到雷击,不得不谈到CB,因为CB是飞机遭到雷击的“罪魁祸首”。CB其实是积雨云的简称,英文名为“Cumulonimbus”。由于雷雨产生于CB中,因此通常也把CB称作“雷暴云”。
CB云是一种强烈的不稳定云系,CB中气流的上升和下沉运动都非常强烈,在南方低纬度地区,夏季CB的顶部高度最高可达到17-18公里。CB发展到旺盛阶段,就可能产生雷雨、闪电、强阵风、强颠簸、积冰等严重影响飞行安全的天气,其影响范围可达到CB周围30公里。
CB对飞行安全的危害非比寻常。除了飞机易遭雷击、无线电通讯系统会受到严重干扰外,还可能出现如下情况:云中强烈湍流和阵性垂直气流,引起飞机的强烈颠簸,使飞机偏离航向,不能保持飞行高度,飞机的操纵性能恶化;云内温度低于0°C部位出现强烈的飞机积冰;云下阵风和强烈风切变,可造成飞机失速、倾斜、严重偏离下滑道而失事;冰雹和龙卷风对飞机的毁坏以及停场未入库飞机和机场设备的损坏。
在飞行活动中,穿越CB相当危险,一般应采取绕飞或爬升到CB顶部以上通过。其中爬升通过时,由于受到飞机本身性能的限制以及CB发展的不稳定性,应特别注意。
云中电荷从何而来
由于CB顶部一般较高,云的上部常有冰晶。冰晶、水滴的破碎以及空气对流等过程,使云中产生电荷。
云中电荷的分布较复杂,但总体而言,云的上部以正电荷为主,下部以负电荷为主。因此,云的上、下部之间形成一个电位差。当电位差达到一定程度后,就会产生放电。这就是我们常见的闪电,闪电的平均电流是3万安培,最大电流可达30万安培。闪电的电压很高,约为1亿至10亿伏特。一个中等强度雷暴的功率可达1000万瓦,相当于一座小型核电站的输出功率。放电过程中,由于闪道中温度骤增,使空气体积急剧膨胀,从而产生冲击波,导致强烈的雷鸣。带有电荷的雷云与地面的突起物接近时,它们之间就发生激烈的放电。在雷电放电地点会出现强烈的闪光和爆炸的轰鸣声。这就是人们见到和听到的闪电雷鸣。
当发展旺盛的CB云顶达到10000米时,云中上升、下降气流的垂直速度可达20米/秒至30米/秒,并伴有强烈的乱流。如果飞机不慎进入云中,强烈的气流会造成飞机中度以上颠簸,如果气流极为强烈,甚至可以使飞机的飞行高度在瞬间上升或下降几十米甚至几百米。这时,由于飞机的剧烈震动,飞机上的仪表指示往往滞后,不能准确地反映飞机瞬间的飞行状态,因此飞行员的操作稍有不慎,就会导致飞行事故发生。
当然,对飞机造成最大威胁的还是CB中的雷电。监测发现,当闪电发生时,CB云中的电场强度可达到每米20000伏特以上,可以想象20万安培的电流所形成的一条温度达15000摄氏度至20000摄氏度的狭长区域,无疑是飞机的禁区,飞机一旦进入,轻则无线电罗盘失灵、电源损坏,重则机毁人亡。