安全管理网

公路路基及路基病害和防治措施

  
评论: 更新日期:2014年01月24日

    路基产生冻胀、下沉等冻害的影响因素是很复杂的,但主要可以归结为温、土、水和力四个要素。四个要素中温度和压力的变化是外因,而土和水是内因。这四个要素在建筑物的冻害过程中都是存在的。其中值得提出的是水这个要素,路基土体中的水分是形成路基冻害的决定性因素。水分迁移是冻土中主要的物理力学过程,是路基产生冻害的基本原因。冻水结成冰,强度剧增;冰融成水,承载力几乎等于零。水的这一特性决定了冻土有很高的承载力,而融土的承载力则大为降低。冻土地区季节融化层中的水,冻结时向地表及上限两个方向转移,形成的水分进行重分布。待季节融化层融化时,表层特别松软,且随融化深度的加深,水亦逐渐下渗,直至上限附近不能再下渗,由于上限附近的土聚积的水分最大,土的抗剪强度就大大降低。若路基边坡底下的上限位置是倾斜的,则路基边坡有沿上限面滑动的可能。即使不会滑动,这种层上水也可能从边坡面渗出,冲蚀边坡。故在冻土地区的路基工程中,处理土中水的问题是很重要的。没有土中水的冻结和融化,就不会发生冻害。而土中水的多少,又直接与土的颗粒粗细有关,粗颗粒的土排水条件好,存水少,就不易产生冻胀或融沉现象;反之,细颗粒土中水分难以排走,就会产生冻胀和融沉现象。故其危害主要有以下几种:
        (1)冻胀:路基的季节融冻层内,如含水量超过一定限值,土中水冻结时路基就会发生冻胀。
    (2)融化下沉:路基基底土层为富冰、饱冰冻土及含土冰层,由于地表水渗入后的热交换过程,和因保温层厚度不够,以及路基土的压力、列车震动的作用等,使基底一定范围内的原地表和原始多年冻土上限发生相应的下沉、下降变化,形成路基基底融化槽。
    (3)热融滑坍:由于自然营力或人为活动,破坏了有厚层地下冰分布的斜坡的热平衡状态后,地表土体在重力作用下,沿融冻界面呈牵引式位移而形成的滑坍。
    2. 5  路基翻浆
    翻浆是指在冻胀土的路段,在冬季,地下水分连续向上聚集、冻结成冰,导致春融期间土基含水率过大,强度急剧降低,在行车作用下路面发生裂缝、鼓包、冒泥等现象。冬季路面开始冻结,不断向深处发展,上下层形成了温度差,由于气候的变化,零度等温线不断下移,形成一层、两层或多层聚冰层。土基中水分冻结后体积膨胀,由于土质不均匀,使路面冻死或冻胀隆起。春季气温回升,由于路面导热性大,路中的溶解速度比两侧快,水分不易向下及两侧排泄。土基土层便呈现过湿状态,当溶解到聚冰层时,土层的湿度土层的湿度有时会超过液限。土基承载力极低,在车辆通过时稀软的泥浆会沿着路面的裂缝挤出或形成较深的车辙和鼓包。
    2. 6  雪害
    雪崩、风雪流(风吹雪)和集中持续的降雪在公路上形成的积雪和雪滑等危害交通的现象称为雪害。
    2. 7  不良地质和水文条件造成的路基破坏
    公路通过不良地质地段时(如泥石流、冻土、盐渍土、溶洞) 和较大的自然灾害(如大暴雨) 等地区,均可能导致路基的大规模破坏。
   
    三、危害的防治措施
    3.1 路基沉陷的防治
    选择良好的路基用土(如砂性土) 填筑路基,如果在必要时,应对路基上层填土作稳定性处理施工时,采用合理的施工方法,严格遵守《公路路基施工规范》的规定,分层填筑,分层碾压,一定要保证每一层路基填料的压实度。使路基有足够的强度和稳定性来承受行车荷载的作用。另外,在路基施工时,应严格控制路基填土的含水量,避免在层与层中间形成过湿的软弱夹层。在特殊潮湿地区, 路基上的压实是相当困难的,对于天然稠度小于的黏质土, 当用于下路床及其下的路基填料时, 可采用规定的轻型压实标准;改善填料的性质, 在土中掺加生石灰, 通常可以获得预期的效果, 也可采用新型吸水材料加固。黄土地区应特别注意路基排水, 对地表水应采取拦截、分散、防渗、远接远送的原则, 根据设计及时做好综合排水设施, 将水迅速引离路基。在填挖交界处引出边沟水量,应做好出水口的加固。
    修筑在斜坡上的路堤和半填半挖路基,如果未按照规定将斜坡挖成台阶,铲除植被,或者对地下水露头没有妥善处理,地表排水不畅,坡脚下形成积水等,会使路基土长期受水浸润,往往达到或接近饱和状态。这样,路基在自重和外力作用下,失去稳定,发生突然下沉和滑移。对于这种病害的防治办法,主要是做好路基排水,如修建截水沟,排除地表积水,修建盲沟、渗沟、平洞疏导底下水,必要时修建护坡、挡墙,对路基进行支挡防护等。
    3. 2 对土基沉陷的防治
    (1)换填法:当建筑物基础下的持力层比较软弱、不能满足上部结构荷载对地基的要求时,常采用换土垫层来处理软弱地基。即将基础下一定范围内的土层挖去,然后回填以强度较大的砂、碎石或灰土等,并夯实至密实。
    (2)预压法:预压法是一种有效的软土地基处理方法。该方法的实质是,在建筑物或构筑物建造前,先在拟建场地上施加或分级施加与其相当的荷载,使土体中孔隙水排出,孔隙体积变小,土体密实,提高地基承载力和稳定性。堆载预压法处理深度一般达10m左右,真空预压法处理深度可达15m左右。   
    (3)强夯法:强夯法是法国L·梅纳(Menard)1969年首创的一种地基加固方法,即用几十吨重锤从高处落下,反复多次夯击地面,对地基进行强力夯实。实践证明,经夯击后的地基承载力可提高2~5倍,压缩性可降低200~500%,影响深度在10m以上。
    (4)振冲法:振冲法是振动水冲击法的简称,按不同土类可分为振冲置换法和振冲密实法两类。振冲法在粘性土 中主要起振冲置换作用,置换后填料形成的桩体与土组成复合地基;在砂土中主要起振动挤密和振动液化作用。振冲法的处理深度可达10m左右。
    (5)深层搅拌法:深层搅拌法系利用水泥或其它固化剂通过特制的搅拌机械,在地基中将水泥和土体强制拌和,使软弱土 硬结成整体,形成具有水稳性和足够强度的水泥土桩或地下连续墙 ,处理深度可达8~12m。 施工过程:定位-沉入到底部-喷浆搅拌(上升)-重复搅拌(下沉)-重复搅拌(上升)-完毕。
    (6)砂石桩法:振动沉管砂石桩是振动沉管砂桩和振动沉管碎石桩的简称。振动沉管砂石桩就是在振动机的振动作用下,把套管打入规定的设计深度,夯管入土后,挤密了套管周围土体,然后投入砂石,再排砂石于土中,振动密实成桩,多次循环后就成为砂石桩。也可采用锤击沉管方法。桩与桩间土形成复合地基,从而提高地基的承载力和防止砂土振动液化,也可用于增大软弱粘性土的整体稳定性,其处理深度达10m左右。   
    (7)土或灰土挤密桩法:土桩及灰土桩是利用沉管、冲击或爆扩等方法在地基中挤土成孔,然后向孔内夯填素土或灰土成桩。成孔时,桩孔部位的土被侧向挤出,从而使桩周土得以加密。土桩及灰土桩挤密地基,是由土桩或灰土桩与桩间挤密土共同组成复合地基。土桩及灰土桩法的特点是:就地取材,以土治土,原位处理、深层加密和费用较低。
   
    3. 3 边坡的防护
    (1) 防治崩塌的主要措施有:
    ①路基上方的危岩、危石应及时检查清除,特别在雨季前要细致检查。如有威胁行车安全的路段,可根据地形和岩层情况,采取嵌补、支顶的方法予以加固。
    ②在小型崩塌或落石地段,应采取全部清除的办法;如果基岩破坏严重,崩塌、落石的物质来源丰富,则易修建落石平台、落石槽等拦截结构物。
    ③由于存在软弱结构面而引起崩塌的高边坡,可根据情况采用支挡墙或支护墙等措施。
    ④对边坡坡脚因受河水冲刷而易形成崩塌时,要对河岸做防护工程。
    ⑤在可能发生崩塌的地段,必须做好地面排水设施。
    (2) 防治泥石流的主要措施有:
    ①对流泥、流石的边坡来说,在春秋两季,应进行大量的植树造林、铺植草皮。
    ②在泥石流形成区的上侧修筑截水沟、排水沟,把水引出去,以减少或消除洪水的影响。
    (3) 防治滑坡的主要措施有
    ①在滑坡体外设置环形截水沟,拦截旁引地表水;根据地下水流向设置盲沟、隧洞,截断和引出地下水;在滑坡体内设置树枝状排水沟、渗水沟和竖井等排出内部积水;严密阻塞夯实裂缝,滑坡表面植树种草,以防止地表水下渗,加快地下水蒸发。
   
    ②修建单级或多级重力式挡墙。近年来,锚杆式挡墙和抗滑桩也日渐广泛采用。锚杆式挡墙由钢筋混凝土板面和水平式倾斜的锚杆组成。抗滑桩有钢筋混凝土挖孔桩、钻孔桩和打入桩等。抗滑桩呈排状组合,布置方法有密排式、间隔式、承台联接式等。
    ③把滑体后部土石挖去一部分,减轻滑体自重,促使滑坡稳定。这种方法适用于滑床上陡下缓,后壁及两侧岩土稳定的滑坡。
    ④在滑体前沿用土筑成反压堤,对滑体进行反压。这种办法多结合减重弃土进行,效果甚好。但公路上产生的滑坡,多因地形限制,不便采用。
    此外,滑坡还可采用电化学法,硅化学法,焙烧法等技术防治。但是,这些方法技术复杂,所需投资较大,较少采用。
    (4) 防治坡面冲刷的主要措施
    用土工格栅代替铁丝做石笼, 用聚脂或聚胺脂类土工织物混凝土护坡模袋做成的护面板防护受水冲击的边坡,很能适应土体不均匀沉降。
   
    3. 4 水毁的防治
    (1)水毁抢修
    一般分防洪抢险和抢修通车两种,前者是保护公路的应急防抢措施,后者是在毁后迅速抢通路线的维持通车措施。抢修通车主要是尽快清除坍方淤泥,填补冲沟缺口,修复小桥涵洞,铺设简易路面,尽快把路线抢修通车。一时难于修复的大中桥梁和路段,架设舟桥或浮桥、钢木便桥,或设置临时性轮渡以及开辟便道、组织车辆绕路行驶等,以维持通车。

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们